Kilai Mutua, Waititu Gichuhi A, Kibira Wanjoya A, El-Raouf M M Abd, Abushal Tahani A
Department of Mathematics, Pan African Insitute of Basic Science, Technology and Innovation, Nairobi, Kenya.
Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
Results Phys. 2022 Apr;35:105260. doi: 10.1016/j.rinp.2022.105260. Epub 2022 Feb 22.
The aim of this paper is to specify a new flexible statistical model to analyze COVID-19 mortality rates in Italy and Canada. A new versatile lifetime distribution with four parameters is proposed by using the exponentiated generalized class of distributions and the gull alpha power Rayleigh distribution to form the exponentiated generalized gull alpha power Rayleigh (EGGAPR) distribution. This new distribution is characterized by a tractable cumulative distribution function. To estimate the unknown parameters of the proposed distribution the maximum likelihood estimation method is used. In evaluating the effectiveness of the MLE method graphical displays of the Monte Carlo simulation are presented. The EGGAPR distribution is compared to its sub-models which include the exponentiated gull alpha Rayleigh distribution, the gull alpha Rayleigh distribution, exponentiated generalized Rayleigh distribution, exponentiated Rayleigh distribution and the Rayleigh distribution. Different measures of goodness-of-fit are used to investigate whether the EGGAPR distribution is more flexible and fit than its sub-models in modeling COVID-19 mortality rates.
本文旨在指定一种新的灵活统计模型,以分析意大利和加拿大的新冠肺炎死亡率。通过使用指数广义分布类和海鸥α幂瑞利分布来形成指数广义海鸥α幂瑞利(EGGAPR)分布,提出了一种新的具有四个参数的通用寿命分布。这种新分布的特点是具有易于处理的累积分布函数。为了估计所提出分布的未知参数,使用了最大似然估计方法。在评估最大似然估计方法的有效性时,给出了蒙特卡罗模拟的图形展示。将EGGAPR分布与其子模型进行比较,这些子模型包括指数海鸥α瑞利分布、海鸥α瑞利分布、指数广义瑞利分布、指数瑞利分布和瑞利分布。使用不同的拟合优度度量来研究在对新冠肺炎死亡率进行建模时,EGGAPR分布是否比其子模型更灵活且拟合效果更好。