Suppr超能文献

采用人工固体电解质界面消除石墨剥落以实现稳定的锂离子电池

Eliminating Graphite Exfoliation with an Artificial Solid Electrolyte Interphase for Stable Lithium-Ion Batteries.

作者信息

Zhou Junhua, Ma Keni, Lian Xueyu, Shi Qitao, Wang Jiaqi, Chen Zhujie, Guo Lingli, Liu Yu, Bachmatiuk Alicja, Sun Jingyu, Yang Ruizhi, Choi Jin-Ho, Rümmeli Mark H

机构信息

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China.

LUKASIEWICZ Research Network, PORT Polish Center for Technology Development, Stablowicka 147, Wroclaw, 54-066, Poland.

出版信息

Small. 2022 Apr;18(15):e2107460. doi: 10.1002/smll.202107460. Epub 2022 Feb 27.

Abstract

Although graphite materials with desirable comprehensive properties dominate the anode market of commercial lithium-ion batteries (LIBs), their low capacity during fast charging precludes further commercialization. In the present work, natural graphite (G) is reported not only to suffer from low capacity during fast charging, but also from charge failure after many charging cycles. Using different characterization techniques, severe graphite exfoliation, and continuously increasing solid electrolyte interphase (SEI) are demonstrated as reasons for the failure of G samples. An ultrathin artificial SEI is proposed, addressing these problems effectively and ensuring extremely stable operation of the graphite anode, with a capacity retention of ≈97.5% after 400 cycles at 1 C. Such an artificial SEI modification strategy provides a universal approach to tailoring and designing better anode materials for next-generation LIBs with high energy densities.

摘要

尽管具有理想综合性能的石墨材料在商用锂离子电池(LIBs)的阳极市场中占据主导地位,但其在快速充电过程中的低容量阻碍了进一步商业化。在本工作中,据报道天然石墨(G)不仅在快速充电过程中容量较低,而且在多次充电循环后会出现充电失败的情况。使用不同的表征技术表明,严重的石墨剥落和不断增加的固体电解质界面(SEI)是G样品失效的原因。提出了一种超薄人工SEI,有效解决了这些问题,并确保了石墨阳极的极其稳定运行,在1 C下400次循环后容量保持率约为97.5%。这种人工SEI改性策略为定制和设计具有高能量密度的下一代LIBs的更好阳极材料提供了一种通用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验