Suppr超能文献

采用石墨阳极的50C快速充电锂离子电池。

50C Fast-Charge Li-Ion Batteries using a Graphite Anode.

作者信息

Sun Chuangchao, Ji Xiao, Weng Suting, Li Ruhong, Huang Xiaoteng, Zhu Chunnan, Xiao Xuezhang, Deng Tao, Fan Liwu, Chen Lixin, Wang Xuefeng, Wang Chunsheng, Fan Xiulin

机构信息

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.

出版信息

Adv Mater. 2022 Oct;34(43):e2206020. doi: 10.1002/adma.202206020. Epub 2022 Sep 23.

Abstract

Li-ion batteries have made inroads into the electric vehicle market with high energy densities, yet they still suffer from slow kinetics limited by the graphite anode. Here, electrolytes enabling extreme fast charging (XFC) of a microsized graphite anode without Li plating are designed. Comprehensive characterization and simulations on the diffusion of Li in the bulk electrolyte, charge-transfer process, and the solid electrolyte interphase (SEI) demonstrate that high ionic conductivity, low desolvation energy of Li , and protective SEI are essential for XFC. Based on the criterion, two fast-charging electrolytes are designed: low-voltage 1.8 m LiFSI in 1,3-dioxolane (for LiFePO ||graphite cells) and high-voltage 1.0 m LiPF in a mixture of 4-fluoroethylene carbonate and acetonitrile (7:3 by vol) (for LiNi Co Mn O ||graphite cells). The former electrolyte enables the graphite electrode to achieve 180 mAh g at 50C (1C = 370 mAh g ), which is 10 times higher than that of a conventional electrolyte. The latter electrolyte enables LiNi Co Mn O ||graphite cells (2 mAh cm , N/P ratio = 1) to provide a record-breaking reversible capacity of 170 mAh g at 4C charge and 0.3C discharge. This work unveils the key mechanisms for XFC and provides instructive electrolyte design principles for practical fast-charging LIBs with graphite anodes.

摘要

锂离子电池凭借高能量密度进入了电动汽车市场,然而它们仍然受到石墨负极限制的缓慢动力学的困扰。在此,设计了一种能使微型石墨负极实现超快充电(XFC)且无锂镀层的电解质。对锂在本体电解质中的扩散、电荷转移过程以及固体电解质界面(SEI)进行的全面表征和模拟表明,高离子电导率、低锂去溶剂化能以及保护性SEI对于超快充电至关重要。基于该标准,设计了两种快速充电电解质:1,3 - 二氧戊环中1.8 m LiFSI的低电压电解质(用于LiFePO ||石墨电池)和4 - 氟代碳酸乙烯酯与乙腈体积比为7:3的混合物中1.0 m LiPF的高电压电解质(用于LiNiCoMnO ||石墨电池)。前一种电解质能使石墨电极在50C(1C = 370 mAh g )时实现180 mAh g 的容量,这比传统电解质高出10倍。后一种电解质能使LiNiCoMnO ||石墨电池(2 mAh cm ,N/P比 = 1)在4C充电和0.3C放电时提供创纪录的170 mAh g 的可逆容量。这项工作揭示了超快充电的关键机制,并为具有石墨负极的实用快速充电锂离子电池提供了指导性的电解质设计原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验