Suppr超能文献

通过深度神经网络快速获取高质量的核磁共振纯位移波谱。

Fast Acquisition of High-Quality Nuclear Magnetic Resonance Pure Shift Spectroscopy via a Deep Neural Network.

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 422 Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China.

出版信息

J Phys Chem Lett. 2022 Mar 10;13(9):2101-2106. doi: 10.1021/acs.jpclett.2c00100. Epub 2022 Feb 28.

Abstract

Pure shift methods improve the resolution of proton nuclear magnetic resonance spectra at the cost of time. The pure shift yielded by chirp excitation (PSYCHE) method is a promising pure shift method. We propose a method of reconstructing the undersampled PSYCHE spectra based on deep learning to accelerate the spectra acquisition. It only takes 17 s to obtain a high-quality pure shift spectrum. The network can completely remove undersampling artifacts and chunking sidebands and improve the signal-to-noise ratio, obtaining completely clean pure shift spectra. The reconstruction quality is better than the iterative soft thresholding method. In addition, the network can differentiate low-level signals and chunking sidebands with similar intensities in the mixture, remove sidebands, and retain signals, promoting correct mixture analysis.

摘要

纯偏移方法可以提高质子核磁共振谱的分辨率,但代价是时间。啁啾激发(PSYCHE)方法产生的纯偏移是一种很有前途的纯偏移方法。我们提出了一种基于深度学习的欠采样 PSYCHE 谱重构方法,以加速谱采集。仅需 17 秒即可获得高质量的纯偏移谱。该网络可以完全去除欠采样伪影和分块边带,并提高信噪比,从而获得完全干净的纯偏移谱。重建质量优于迭代软阈值法。此外,该网络可以区分混合物中强度相似的低水平信号和分块边带,去除边带并保留信号,从而促进正确的混合物分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验