Suppr超能文献

循证制定针对患者、医疗服务提供方和医疗流程的治疗方案:特刊导言。

Evidence-based tailoring of treatment to patients, providers, and processes: Introduction to the special issue.

机构信息

Department of Psychology, University of Haifa.

Department of Psychological and Brain Sciences, University of Massachusetts Amherst.

出版信息

J Consult Clin Psychol. 2022 Jan;90(1):1-4. doi: 10.1037/ccp0000694.

Abstract

Given the many evidence-supported psychotherapy interventions, and the fact that no single approach or therapist can successfully help all patients, in recent years, there has been a surge in studies focused on evidence-based methods of tailoring treatment to patients, providers, and processes. Although the field still has a long way to go in reliably mapping specific empirically supported avenues to personalized therapies, emerging results from this line of research underscore the potential for such optimization. In this vein, the articles in the special issue describe some of the most auspicious recent developments in the field of personalized mental health treatment. In this introduction to the special issue, we synthesize the articles and propose a list of some of the most promising personalization principles. These include (a) a diversity of aims that the approaches seek to achieve; (b) a diversity of outcomes used to evaluate the merits of these approaches; (c) the information on which the tailoring is based; (d) the tailoring approaches themselves; and (e) the research designs used to evaluate them. These pathways can inform the most current tailoring guidelines that can help clinical decision-making and inspire future translational science in this area. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

鉴于有许多证据支持的心理治疗干预措施,而且没有单一的方法或治疗师可以成功帮助所有患者,近年来,人们越来越关注针对患者、提供者和治疗过程的循证治疗方法。尽管该领域在可靠地映射特定的循证途径以实现个性化治疗方面还有很长的路要走,但这一研究方向的新兴结果强调了这种优化的潜力。本着这种精神,本期特刊中的文章描述了个性化心理健康治疗领域最近一些最有希望的发展。在本期特刊的介绍中,我们综合了这些文章,并提出了一些最有前途的个性化原则列表。这些原则包括:(a)方法旨在实现的目标的多样性;(b)用于评估这些方法优点的结果的多样性;(c)基于的信息;(d)定制方法本身;以及(e)用于评估它们的研究设计。这些途径可以为当前的定制指南提供信息,帮助临床决策,并为该领域的未来转化科学提供灵感。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验