Université de Paris, IAME, UMR 1137, INSERM, Paris, France.
LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France.
Antimicrob Agents Chemother. 2022 Mar 15;66(3):e0197221. doi: 10.1128/AAC.01972-21.
Chlorhexidine is a widely used antiseptic in hospital and community health care. Decreased susceptibility to this compound has been recently described in Klebsiella pneumoniae and Pseudomonas aeruginosa, together with cross-resistance to colistin. Surprisingly, few data are available for Escherichia coli, the main species responsible for community and health care-associated infections. In order to decipher chlorhexidine resistance mechanisms in E. coli, we studied both derived and clinical isolates through whole-genome sequence analysis. Comparison of strains grown under chlorhexidine pressure identified mutations in the gene coding for a phospholipid transport system. Phenotypic analyses of single-gene mutants from the Keio collection confirmed the role of this mutation in the decreased susceptibility to chlorhexidine. However, mutations in were not found in isolates from large clinical collections. In contrast, genome wide association studies (GWAS) showed that, in clinical strains, chlorhexidine reduced susceptibility was associated with the presence of genes of class B coding for efflux pumps and located in a Tn transposon. Construction of recombinant strains in E. coli K-12 confirmed the role of determinant in acquired resistance to both chlorhexidine and tetracycline. Our results reveal that two different evolutionary paths lead to chlorhexidine decreased susceptibility: one restricted to evolution conditions and involving a retrograde phospholipid transport system; the other observed in clinical isolates associated with efflux pump TetA. None of these mechanisms provide cross-resistance to colistin. This work demonstrates the GWAS power to identify new resistance mechanisms in bacterial species.
洗必泰是医院和社区卫生保健中广泛使用的一种防腐剂。最近在肺炎克雷伯菌和铜绿假单胞菌中发现了对该化合物的敏感性降低,并且对粘菌素产生交叉耐药性。令人惊讶的是,对于主要引起社区和医疗保健相关感染的大肠杆菌,可用的数据很少。为了解析大肠杆菌中洗必泰耐药机制,我们通过全基因组序列分析研究了衍生株和临床分离株。在洗必泰压力下生长的菌株比较,鉴定出编码磷脂转运系统的基因 发生突变。来自 Keio 集合的单基因突变体的表型分析证实了该突变在降低对洗必泰的敏感性中的作用。然而,在来自大型临床分离株的分离株中未发现 突变。相比之下,全基因组关联研究(GWAS)表明,在临床菌株中,洗必泰降低敏感性与类 B 编码外排泵的 基因的存在相关,这些基因位于 Tn 转座子中。在大肠杆菌 K-12 中构建重组菌株证实了 决定子在获得性对洗必泰和四环素的耐药性中的作用。我们的研究结果表明,两种不同的进化途径导致洗必泰敏感性降低:一种仅限于 进化条件,涉及逆行磷脂转运系统;另一种在与外排泵 TetA 相关的临床分离株中观察到。这些机制均未提供对粘菌素的交叉耐药性。这项工作证明了 GWAS 识别细菌物种中新的耐药机制的能力。