Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
Methods Mol Biol. 2022;2439:105-115. doi: 10.1007/978-1-0716-2047-2_8.
X-ray crystallography is one of the most prominent techniques for determining high-resolution structures of nucleic acids. The major challenges are to obtain well-diffracting single crystals and to solve the phase problem. The absence of structural information impedes the elucidation of the molecular details of biological processes. A particularly intriguing example is the RNA-cleavage catalyzed by the 10-23 deoxyribozyme (DNAzyme). This DNAzyme consists of a catalytic core that is flanked by two substrate binding arms, which can be designed to bind any RNA of interest. Structure elucidation of the 10-23 DNAzyme in a biologically relevant conformation faces three major challenges: (1) stabilization of the RNA substrate to capture the DNA:RNA complex in the pre-catalytic conformation, (2) prevention of the formation of an artificial duplex conformation due to a self-complementary sequence in the catalytic core of the DNAzyme, and (3) the crystallization of nucleic acids with their uniform surfaces. Here, we provide a protocol for an innovative strategy facilitating the crystallization of protein:nucleic acid complexes using a soaking approach and discuss on how to apply this protocol for the structure elucidation of the 10-23 DNAzyme. For this purpose, we describe the purification procedure of an optimized variant of the RNA-binding protein U1A, the crystallization of this specific U1A variant, the soaking process with its specific RNA hairpin loop, and finally suggest a strategy for applying this procedure on the 10-23 DNAzyme in complex with its specific RNA target.
X 射线晶体学是确定核酸高分辨率结构的最主要技术之一。主要的挑战是获得具有良好衍射性能的单晶并解决相位问题。缺乏结构信息会阻碍对生物过程分子细节的阐明。一个特别有趣的例子是由 10-23 脱氧核酶(DNA 酶)催化的 RNA 切割。这种 DNA 酶由一个催化核心组成,两侧是两个底物结合臂,可以设计为结合任何感兴趣的 RNA。具有生物相关性构象的 10-23 DNA 酶的结构阐明面临三个主要挑战:(1)稳定 RNA 底物以捕获预催化构象中的 DNA:RNA 复合物,(2)防止由于 DNA 酶催化核心中的自我互补序列形成人工双链构象,以及(3)使具有均匀表面的核酸结晶。在这里,我们提供了一种使用浸泡法促进蛋白核酸复合物结晶的创新策略的方案,并讨论了如何将该方案应用于 10-23 DNA 酶的结构阐明。为此,我们描述了 RNA 结合蛋白 U1A 的优化变体的纯化程序、该特定 U1A 变体的结晶过程、与其特定 RNA 发夹环的浸泡过程,最后提出了将该程序应用于与特定 RNA 靶标结合的 10-23 DNA 酶的策略。