Sharma Yogesh, Lee Min-Cheol, Pitike Krishna Chaitanya, Mishra Karuna K, Zheng Qiang, Gao Xiang, Musico Brianna L, Mazza Alessandro R, Katiyar Ram S, Keppens Veerle, Brahlek Matthew, Yarotski Dmitry A, Prasankumar Rohit P, Chen Aiping, Cooper Valentino R, Ward T Zac
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11962-11970. doi: 10.1021/acsami.2c00340. Epub 2022 Feb 28.
Relaxor ferroelectrics are important in technological applications due to strong electromechanical response, energy storage capacity, electrocaloric effect, and pyroelectric energy conversion properties. Current efforts to discover and design materials in this class generally rely on substitutional doping as slight changes to local compositional order can significantly affect the Curie temperature, morphotropic phase boundary, and electromechanical responses. In this work, we demonstrate that moving to the strong limit of compositional complexity in an O perovskite allows stabilization of relaxor responses that do not rely on a single narrow phase transition region. Entropy-assisted synthesis approaches are utilized to synthesize single-crystal Ba(TiSnZrHfNb)O [Ba(5)O] films. The high levels of configurational disorder present in this system are found to influence dielectric relaxation, phase transitions, nanopolar domain formation, and Curie temperature. Temperature-dependent dielectric, Raman spectroscopy, and second-harmonic generation measurements reveal multiple phase transitions, a high Curie temperature of 570 K, and the relaxor ferroelectric nature of Ba(5)O films. The first-principles theory calculations are used to predict possible combinations of cations to design relaxor ferroelectrics and quantify the relative feasibility of synthesizing these highly disordered single-phase perovskite systems. The ability to stabilize single-phase perovskites with various cations on the -sites offers possibilities for designing high-performance relaxor ferroelectric materials for piezoelectric, pyroelectric, and electrocaloric applications.
弛豫铁电体因其强机电响应、储能能力、电卡效应和热释电能量转换特性,在技术应用中具有重要意义。目前发现和设计此类材料的工作通常依赖于替代掺杂,因为局部成分顺序的微小变化会显著影响居里温度、准同型相界和机电响应。在这项工作中,我们证明在氧八面体钙钛矿中走向成分复杂性的强极限能够稳定不依赖于单一狭窄相变区域的弛豫响应。利用熵辅助合成方法合成了单晶Ba(TiSnZrHfNb)O₃(Ba₅O)薄膜。发现该系统中存在的高程度组态无序会影响介电弛豫、相变、纳米极性畴形成和居里温度。温度相关的介电、拉曼光谱和二次谐波产生测量揭示了多个相变、570 K的高居里温度以及Ba₅O薄膜的弛豫铁电性质。第一性原理理论计算用于预测阳离子的可能组合以设计弛豫铁电体,并量化合成这些高度无序单相钙钛矿系统的相对可行性。在B位上用各种阳离子稳定单相钙钛矿的能力为设计用于压电、热释电和电卡应用的高性能弛豫铁电材料提供了可能性。