Rizzo Daniel J, Shabani Sara, Jessen Bjarke S, Zhang Jin, McLeod Alexander S, Rubio-Verdú Carmen, Ruta Francesco L, Cothrine Matthew, Yan Jiaqiang, Mandrus David G, Nagler Stephen E, Rubio Angel, Hone James C, Dean Cory R, Pasupathy Abhay N, Basov D N
Department of Physics, Columbia University, New York, New York 10027, United States.
Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States.
Nano Lett. 2022 Mar 9;22(5):1946-1953. doi: 10.1021/acs.nanolett.1c04579. Epub 2022 Feb 28.
The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions. Our STM/STS results reveal that p-n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 10 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p-n nanojunctions in 2D materials.
制造纳米级横向p-n结的能力对于下一代二维(2D)器件至关重要。利用电荷转移异质结构石墨烯/α-RuCl,我们在石墨烯纳米气泡附近实现了纳米级横向p-n结。我们的多管齐下的实验方法结合了扫描隧道显微镜(STM)和光谱学(STS)以及散射型扫描近场光学显微镜(s-SNOM),以同时探测纳米气泡p-n结的电学和光学响应。我们的STM/STS结果表明,可以实现带隙偏移约为0.6 eV、宽度约为3 nm的p-n结,产生的电场约为10 V/m。同时进行的s-SNOM测量验证了一种点散射体形式,用于模拟表面等离激元极化激元(SPP)与纳米气泡的相互作用。密度泛函理论(DFT)计算证实了我们的实验数据,并揭示了电荷转移对层间距的依赖性。我们的研究为在二维材料中生成p-n纳米结提供了实验和概念基础。