在原始石墨烯/氮化硼异质结构中实现纳米级可重写掺杂模式的调控。

Nanoscale Control of Rewriteable Doping Patterns in Pristine Graphene/Boron Nitride Heterostructures.

机构信息

Department of Physics, University of California , Berkeley, California 94720, United States.

Department of Physics, University of California , Santa Cruz, California 95064, United States.

出版信息

Nano Lett. 2016 Mar 9;16(3):1620-5. doi: 10.1021/acs.nanolett.5b04441. Epub 2016 Feb 11.

Abstract

Nanoscale control of charge doping in two-dimensional (2D) materials permits the realization of electronic analogs of optical phenomena, relativistic physics at low energies, and technologically promising nanoelectronics. Electrostatic gating and chemical doping are the two most common methods to achieve local control of such doping. However, these approaches suffer from complicated fabrication processes that introduce contamination, change material properties irreversibly, and lack flexible pattern control. Here we demonstrate a clean, simple, and reversible technique that permits writing, reading, and erasing of doping patterns for 2D materials at the nanometer scale. We accomplish this by employing a graphene/boron nitride heterostructure that is equipped with a bottom gate electrode. By using electron transport and scanning tunneling microscopy (STM), we demonstrate that spatial control of charge doping can be realized with the application of either light or STM tip voltage excitations in conjunction with a gate electric field. Our straightforward and novel technique provides a new path toward on-demand graphene p-n junctions and ultrathin memory devices.

摘要

在二维(2D)材料中对电荷掺杂进行纳米级控制,可以实现光学现象、低能相对论物理以及具有技术前景的纳米电子学的电子模拟。静电门控和化学掺杂是实现这种掺杂局部控制的两种最常见的方法。然而,这些方法存在复杂的制造工艺,这些工艺会引入污染、不可逆转地改变材料性质,并且缺乏灵活的图案控制。在这里,我们展示了一种清洁、简单且可重复的技术,可在纳米尺度上对 2D 材料的掺杂图案进行写入、读取和擦除。我们通过使用带有底栅电极的石墨烯/氮化硼异质结构来实现这一点。通过电子输运和扫描隧道显微镜(STM),我们证明了通过施加栅极电场,结合光或 STM 针尖电压激励,可以实现电荷掺杂的空间控制。我们的简单新颖的技术为按需石墨烯 p-n 结和超薄存储器件提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索