Computational Neuroimaging Group, Brain and Mind centre, Trinity College Dublin, Ireland.
Brain and Mind Centre, University of Sydney, Sydney, Australia.
Expert Rev Neurother. 2022 Mar;22(3):179-207. doi: 10.1080/14737175.2022.2048648. Epub 2022 Mar 9.
While the imaging signatures of frontotemporal lobar degeneration (FTLD) phenotypes and genotypes are well-characterized based on group-level descriptive analyses, the meaningful interpretation of single MRI scans remains challenging. Single-subject MRI classification frameworks rely on complex computational models and large training datasets to categorize individual patients into diagnostic subgroups based on distinguishing imaging features. Reliable individual subject data interpretation is hugely important in the clinical setting to expedite the diagnosis and classify individuals into relevant prognostic categories.
This article reviews (1) single-subject MRI classification strategies in symptomatic and pre-symptomatic FTLD, (2) practical clinical implications, and (3) the limitations of current single-subject data interpretation models.
Classification studies in FTLD have demonstrated the feasibility of categorizing individual subjects into diagnostic groups based on multiparametric imaging data. Preliminary data indicate that pre-symptomatic FTLD mutation carriers may also be reliably distinguished from controls. Despite momentous advances in the field, significant further improvements are needed before these models can be developed into viable clinical applications.
虽然基于群组描述性分析已经很好地描述了额颞叶变性(FTLD)表型和基因型的影像学特征,但对单个 MRI 扫描的有意义的解释仍然具有挑战性。基于区分成像特征,对单个 MRI 分类框架依赖于复杂的计算模型和大型训练数据集,将个体患者分类到诊断亚组中。在临床环境中,可靠的个体数据解释对于加速诊断和将个体分类到相关预后类别非常重要。
本文回顾了(1)有症状和无症状 FTLD 中的单例 MRI 分类策略,(2)实际的临床意义,以及(3)当前单例数据解释模型的局限性。
FTLD 的分类研究已经证明了基于多参数成像数据将个体受试者分类为诊断组的可行性。初步数据表明,无症状的 FTLD 突变携带者也可以与对照者可靠地区分。尽管该领域取得了重大进展,但在这些模型能够发展成为可行的临床应用之前,还需要进一步改进。