Meyer Sebastian, Mueller Karsten, Stuke Katharina, Bisenius Sandrine, Diehl-Schmid Janine, Jessen Frank, Kassubek Jan, Kornhuber Johannes, Ludolph Albert C, Prudlo Johannes, Schneider Anja, Schuemberg Katharina, Yakushev Igor, Otto Markus, Schroeter Matthias L
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Clinic for Psychiatry and Psychotherapy, Technical University of Munich, Germany.
Neuroimage Clin. 2017 Feb 6;14:656-662. doi: 10.1016/j.nicl.2017.02.001. eCollection 2017.
Frontotemporal lobar degeneration (FTLD) is a common cause of early onset dementia. Behavioral variant frontotemporal dementia (bvFTD), its most common subtype, is characterized by deep alterations in behavior and personality. In 2011, new diagnostic criteria were suggested that incorporate imaging criteria into diagnostic algorithms. The study aimed at validating the potential of imaging criteria to individually predict diagnosis with machine learning algorithms.
MATERIALS & METHODS: Brain atrophy was measured with structural magnetic resonance imaging (MRI) at 3 Tesla in a multi-centric cohort of 52 bvFTD patients and 52 healthy control subjects from the German FTLD Consortium's Study. Beside group comparisons, diagnosis bvFTD vs. controls was individually predicted in each subject with support vector machine classification in MRI data across the whole brain or in frontotemporal, insular regions, and basal ganglia known to be mainly affected based on recent meta-analyses. Multi-center effects were controlled for with a new method, "leave one center out" conjunction analyses, i.e. repeatedly excluding subjects from each center from the analysis.
Group comparisons revealed atrophy in, most consistently, the frontal lobe in bvFTD beside alterations in the insula, basal ganglia and temporal lobe. Most remarkably, support vector machine classification enabled predicting diagnosis in single patients with a high accuracy of up to 84.6%, where accuracy was highest in a region-of-interest approach focusing on frontotemporal, insular regions, and basal ganglia in comparison with the whole brain approach.
Our study demonstrates that MRI, a widespread imaging technology, can individually identify bvFTD with high accuracy in multi-center imaging data, paving the road to personalized diagnostic approaches in the future.
额颞叶变性(FTLD)是早发性痴呆的常见病因。行为变异型额颞叶痴呆(bvFTD)是其最常见的亚型,其特征是行为和人格发生深刻改变。2011年,有人提出了新的诊断标准,将影像学标准纳入诊断算法。该研究旨在验证影像学标准通过机器学习算法单独预测诊断的潜力。
在德国FTLD联盟研究的一个多中心队列中,对52例bvFTD患者和52名健康对照者进行了3特斯拉的结构磁共振成像(MRI),测量脑萎缩情况。除了进行组间比较外,还使用支持向量机分类法对每个受试者的MRI数据在全脑或根据近期荟萃分析已知主要受影响的额颞叶、岛叶区域和基底神经节中,对bvFTD与对照的诊断进行个体预测。采用一种新方法“留一中心法”联合分析来控制多中心效应,即每次从分析中排除每个中心的受试者。
组间比较显示,bvFTD患者除岛叶、基底神经节和颞叶改变外,最一致的是额叶萎缩。最显著的是,支持向量机分类能够以高达84.6%的高精度预测单个患者的诊断,与全脑方法相比,聚焦于额颞叶、岛叶区域和基底神经节的感兴趣区域方法的准确率最高。
我们的研究表明,MRI作为一种广泛应用的成像技术,能够在多中心成像数据中以高精度个体识别bvFTD,为未来的个性化诊断方法铺平了道路。