Mo Xiaolan, Chen Xiujuan, Wang Xianggui, Zhong Xiaoli, Liang Huiying, Wei Yuanyi, Deng Houliang, Hu Rong, Zhang Tao, Chen Yilu, Gao Xia, Huang Min, Li Jiali
Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China.
Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
Pharmgenomics Pers Med. 2022 Feb 22;15:143-155. doi: 10.2147/PGPM.S339318. eCollection 2022.
Tacrolimus (TAC) is a first-line immunosuppressant for patients with refractory nephrotic syndrome (NS). However, there is a high inter-patient variability of TAC pharmacokinetics, thus therapeutic drug monitoring (TDM) is required. In this study, we aimed to employ machine learning algorithms to investigate the impact of clinical and genetic variables on the TAC dose/weight-adjusted trough concentration (C/D) in Chinese children with refractory NS, and then develop and validate the TAC C/D prediction models.
The association of 82 clinical variables and 244 single nucleotide polymorphisms (SNPs) with TAC C/D in the third month since TAC treatment was examined in 171 children with refractory NS. Extremely randomized trees (ET), gradient boosting decision tree (GBDT), random forest (RF), extreme gradient boosting (XGBoost), and Lasso regression were carried out to establish and validate prediction models, respectively. The best prediction models were validated on a cohort of 30 refractory NS patients.
GBDT algorithm performed best in the whole group (R=0.444, MSE=591.032, MAE=20.782, MedAE=18.980) and CYP3A5 nonexpresser group (R=0.264, MSE=477.948, MAE=18.119, MedAE=18.771), while ET algorithm performed best in the CYP3A5 expresser group (R=0.380, MSE=1839.459, MAE=31.257, MedAE=19.399). These prediction models included 3 clinical variables (ALB0, AGE0, and gender) and 10 SNPs ( rs3745859, rs56113315, 4 rs62121818, rs4553808, rs776746, rs12722489, rs1128880, rs7946115, rs2239781, and rs4821478).
The association between the clinical and genetic variables and TAC C/D was described, and three TAC C/D prediction models integrating clinical and genetic variables were developed and validated using machine learning, which may support individualized TAC dosing.
他克莫司(TAC)是难治性肾病综合征(NS)患者的一线免疫抑制剂。然而,TAC的药代动力学在患者间存在很大差异,因此需要进行治疗药物监测(TDM)。在本研究中,我们旨在运用机器学习算法研究临床和基因变量对中国难治性NS患儿TAC剂量/体重校正谷浓度(C/D)的影响,进而开发并验证TAC C/D预测模型。
对171例难治性NS患儿在TAC治疗后第三个月时82个临床变量和244个单核苷酸多态性(SNP)与TAC C/D的相关性进行了研究。分别采用极端随机树(ET)、梯度提升决策树(GBDT)、随机森林(RF)、极端梯度提升(XGBoost)和套索回归来建立和验证预测模型。在30例难治性NS患者队列中对最佳预测模型进行了验证。
GBDT算法在全组(R = 0.444,均方误差[MSE]=591.032,平均绝对误差[MAE]=20.782,中位数绝对误差[MedAE]=18.980)和CYP3A5非表达者组(R = 0.264,MSE = 477.948,MAE = 18.119,MedAE = 18.771)中表现最佳,而ET算法在CYP3A5表达者组中表现最佳(R = 0.380,MSE = 1839.459,MAE = 31.257,MedAE = 19.399)。这些预测模型包括3个临床变量(ALB0、AGE0和性别)和10个SNP(rs3745859、rs56113315、rs62121818、rs4553808、rs776746、rs12722489、rs1128880、rs7946115、rs2239781和rs4821478)。
描述了临床和基因变量与TAC C/D之间的相关性,并运用机器学习开发并验证了三个整合临床和基因变量的TAC C/D预测模型,这可能有助于TAC的个体化给药。