Suppr超能文献

开发和评估不确定性量化机器学习模型,以预测危重症患者哌拉西林的血浆浓度。

Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients.

机构信息

IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium.

Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.

出版信息

BMC Med Inform Decis Mak. 2022 Aug 25;22(1):224. doi: 10.1186/s12911-022-01970-y.

Abstract

BACKGROUND

Beta-lactam antimicrobial concentrations are frequently suboptimal in critically ill patients. Population pharmacokinetic (PopPK) modeling is the golden standard to predict drug concentrations. However, currently available PopPK models often lack predictive accuracy, making them less suited to guide dosing regimen adaptations. Furthermore, many currently developed models for clinical applications often lack uncertainty quantification. We, therefore, aimed to develop machine learning (ML) models for the prediction of piperacillin plasma concentrations while also providing uncertainty quantification with the aim of clinical practice.

METHODS

Blood samples for piperacillin analysis were prospectively collected from critically ill patients receiving continuous infusion of piperacillin/tazobactam. Interpretable ML models for the prediction of piperacillin concentrations were designed using CatBoost and Gaussian processes. Distribution-based Uncertainty Quantification was added to the CatBoost model using a proposed Quantile Ensemble method, useable for any model optimizing a quantile function. These models are subsequently evaluated using the distribution coverage error, a proposed interpretable uncertainty quantification calibration metric. Development and internal evaluation of the ML models were performed on the Ghent University Hospital database (752 piperacillin concentrations from 282 patients). Ensuing, ML models were compared with a published PopPK model on a database from the University Medical Centre of Groningen where a different dosing regimen is used (46 piperacillin concentrations from 15 patients.).

RESULTS

The best performing model was the Catboost model with an RMSE and [Formula: see text] of 31.94-0.64 and 33.53-0.60 for internal evaluation with and without previous concentration. Furthermore, the results prove the added value of the proposed Quantile Ensemble model in providing clinically useful individualized uncertainty predictions and show the limits of homoscedastic methods like Gaussian Processes in clinical applications.

CONCLUSIONS

Our results show that ML models can consistently estimate piperacillin concentrations with acceptable and high predictive accuracy when identical dosing regimens as in the training data are used while providing highly relevant uncertainty predictions. However, generalization capabilities to other dosing schemes are limited. Notwithstanding, incorporating ML models in therapeutic drug monitoring programs seems definitely promising and the current work provides a basis for validating the model in clinical practice.

摘要

背景

在危重症患者中,β-内酰胺类抗菌药物的浓度常常不理想。群体药代动力学(PopPK)建模是预测药物浓度的金标准。然而,目前可用的 PopPK 模型通常缺乏预测准确性,因此不太适合指导剂量方案调整。此外,许多目前开发的用于临床应用的模型通常缺乏不确定性量化。因此,我们旨在开发用于预测哌拉西林血浆浓度的机器学习(ML)模型,同时提供不确定性量化,旨在用于临床实践。

方法

前瞻性地从接受哌拉西林/他唑巴坦连续输注的危重症患者中采集用于哌拉西林分析的血样。使用 CatBoost 和高斯过程设计用于预测哌拉西林浓度的可解释 ML 模型。使用提出的分位数集成方法向 CatBoost 模型添加基于分布的不确定性量化,该方法可用于优化分位数函数的任何模型。使用分布覆盖误差评估这些模型,这是一种提出的可解释不确定性量化校准指标。在根特大学医院数据库(282 名患者的 752 个哌拉西林浓度)上对 ML 模型进行开发和内部评估。随后,将 ML 模型与在使用不同剂量方案的格罗宁根大学医学中心的数据库(15 名患者的 46 个哌拉西林浓度)上的已发表 PopPK 模型进行比较。

结果

表现最佳的模型是 Catboost 模型,内部评估时 RMSE 和[Formula: see text]分别为 31.94-0.64 和 33.53-0.60,内部评估时包括和不包括之前的浓度。此外,结果证明了提出的分位数集成模型在提供临床有用的个体化不确定性预测方面的附加值,并展示了高斯过程等同方差方法在临床应用中的局限性。

结论

我们的结果表明,当使用与训练数据中相同的剂量方案时,ML 模型可以一致地估计哌拉西林的浓度,具有可接受的和高的预测准确性,同时提供高度相关的不确定性预测。然而,对其他剂量方案的泛化能力有限。尽管如此,将 ML 模型纳入治疗药物监测计划似乎确实很有前途,当前的工作为在临床实践中验证该模型提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d95b/9404625/67813cad97b0/12911_2022_1970_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验