Suppr超能文献

C-Fe-Bi纳米复合体系的热演化:从纳米颗粒形成到非均相石墨化阶段

Thermal Evolution of C-Fe-Bi Nanocomposite System: From Nanoparticle Formation to Heterogeneous Graphitization Stage.

作者信息

Rusu Mihai M, Vulpoi Adriana, Maurin Isabelle, Cotet Liviu C, Pop Lucian C, Fort Carmen I, Baia Monica, Baia Lucian, Florea Ileana

机构信息

Faculty of Physics, "Babes-Bolyai" University, M. Kogalniceanu 1, RO-400084, Cluj-Napoca, Romania.

Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, "Babes-Bolyai" University, Treboniu Laurean 42, RO-400271, Cluj-Napoca, Romania.

出版信息

Microsc Microanal. 2022 Mar 1:1-13. doi: 10.1017/S1431927622000241.

Abstract

Carbon xerogel nanocomposites with integrated Bi and Fe particles (C–Bi–Fe) represent an interesting model of carbon nanostructures decorated with multifunctional nanoparticles (NPs) with applicability for electrochemical sensors and catalysts. The present study addresses the fundamental aspects of the catalyzed growth of nano-graphites in C–Bi–Fe systems, relevant in charge transport and thermo-chemical processes. The thermal evolution of a C–Bi–Fe xerogel is investigated using different pyrolysis treatments. At lower temperatures (750°C), hybrid bismuth iron oxide (BFO) NPs are frequently observed, while graphitization manifests under more specific conditions such as higher temperatures (1,050°C) and reduction yields. An in situ heating TEM experiment reveals graphitization activity between 800 and 900°C. NP motion is directly correlated with textural changes of the carbon support due to the catalyzed growth of graphitic nanoshells and nanofibers as confirmed by HR-TEM and electron tomography (ET) for the graphitized sample. An exponential growth model for the catalyst dynamics enables the approximation of activation energies as 0.68 and 0.29–0.34 eV during reduction and graphitization stages. The results suggest some similarities with the tip growth mechanism, while oxygen interference and the limited catalyst–feed gas interactions are considered as the main constraints to enhanced growth.

摘要

含有集成铋和铁颗粒的碳干凝胶纳米复合材料(C–Bi–Fe)是一种有趣的碳纳米结构模型,其表面装饰有多功能纳米颗粒(NP),适用于电化学传感器和催化剂。本研究探讨了C–Bi–Fe系统中纳米石墨催化生长的基本方面,这与电荷传输和热化学过程相关。使用不同的热解处理方法研究了C–Bi–Fe干凝胶的热演化过程。在较低温度(约750°C)下,经常观察到混合铋铁氧化物(BFO)纳米颗粒,而石墨化则在更特定的条件下出现,如较高温度(约1050°C)和还原产率。原位加热透射电子显微镜实验揭示了800至900°C之间的石墨化活性。通过高分辨率透射电子显微镜(HR-TEM)和电子断层扫描(ET)对石墨化样品的分析证实,纳米颗粒的运动与碳载体的结构变化直接相关,这是由于石墨纳米壳和纳米纤维的催化生长所致。催化剂动力学的指数增长模型能够近似得出还原和石墨化阶段的活化能分别为0.68和0.29–0.34 eV。结果表明与尖端生长机制有一些相似之处,同时氧干扰和有限的催化剂与进料气体相互作用被认为是促进生长的主要限制因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验