Suppr超能文献

用于电催化氧还原反应的石墨烯纳米带边缘铁氮活性位点的热控构建

Thermally Controlled Construction of Fe-N Active Sites on the Edge of a Graphene Nanoribbon for an Electrocatalytic Oxygen Reduction Reaction.

作者信息

Matsumoto Koki, Onoda Akira, Kitano Tomoyuki, Sakata Takao, Yasuda Hidehiro, Campidelli Stéphane, Hayashi Takashi

机构信息

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan.

Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan.

出版信息

ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15101-15112. doi: 10.1021/acsami.0c21321. Epub 2021 Mar 15.

Abstract

Pyrolytically prepared iron and nitrogen codoped carbon (Fe/N/C) catalysts are promising nonprecious metal electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell applications. Fabrication of the Fe/N/C catalysts with Fe-N active sites having precise structures is now required. We developed a strategy for thermally controlled construction of the Fe-N structure in Fe/N/C catalysts by applying a bottom-up synthetic methodology based on a N-doped graphene nanoribbon (N-GNR). The preorganized aromatic rings within the precursors assist graphitization during generation of the N-GNR structure with iron-coordinating sites. The Fe/N/C catalyst prepared from the N-GNR precursor, iron ion, and the carbon support Vulcan XC-72R provides a high onset potential of 0.88 V (vs reversible hydrogen electrode (RHE)) and promotes efficient four-electron ORR. X-ray absorption fine structure (XAFS) and X-ray photoelectron spectroscopy (XPS) studies reveal that the N-GNR precursor induces the formation of iron-coordinating nitrogen species during pyrolysis. The details of the graphitization process of the precursor were further investigated by analyzing the precursors pyrolyzed at various temperatures using MgO particles as a sacrificial template, with the results indicating that the graphitized structure was obtained at 700 °C. The preorganized N-GNR precursors and its pyrolysis conditions for graphitization are found to be important factors for generation of the Fe-N active sites along with the N-GNR structure in high-performance Fe/N/C catalysts for the ORR.

摘要

热解制备的铁氮共掺杂碳(Fe/N/C)催化剂是燃料电池应用中氧还原反应(ORR)很有前景的非贵金属电催化剂。目前需要制备具有精确结构的含Fe-N活性位点的Fe/N/C催化剂。我们通过应用基于氮掺杂石墨烯纳米带(N-GNR)的自下而上合成方法,开发了一种热控构建Fe/N/C催化剂中Fe-N结构的策略。前驱体中预组织的芳环在生成具有铁配位位点的N-GNR结构过程中有助于石墨化。由N-GNR前驱体、铁离子和碳载体Vulcan XC-72R制备的Fe/N/C催化剂提供了0.88 V(相对于可逆氢电极(RHE))的高起始电位,并促进高效的四电子ORR。X射线吸收精细结构(XAFS)和X射线光电子能谱(XPS)研究表明,N-GNR前驱体在热解过程中诱导形成铁配位氮物种。通过使用MgO颗粒作为牺牲模板分析在不同温度下热解的前驱体,进一步研究了前驱体石墨化过程的细节,结果表明在700℃获得了石墨化结构。发现预组织的N-GNR前驱体及其石墨化热解条件是在用于ORR的高性能Fe/N/C催化剂中与N-GNR结构一起生成Fe-N活性位点的重要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验