Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
Chem Soc Rev. 2022 Mar 21;51(6):2255-2312. doi: 10.1039/d1cs00494h.
The generation of azide radical (N˙) occurs from its precursors primarily a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N˙ electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, ), (ii) chemical reactivities and kinetics, (iii) methods to produce N˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
叠氮自由基(N˙)的生成主要来自其前体的单电子转移(SET)过程或通过化学方法或先进的光氧化还原/电化学方法进行的均裂裂解。这种生成的瞬态开壳物种具有独特的特征,决定了其反应性。在过去,叠氮自由基作为生物重要分子的 1e 氧化剂,被广泛用于辐射化学的各种研究中,但现在它正被用于基于其加成和分子间氢原子转移(HAT)能力的合成应用。由于含氮分子在合成、药物发现、生物和材料科学中的重要作用,直接加成到不饱和键上,同时构建 C-N 键和其他(C-X)键的能力确实值得强调。此外,通过 N˙ 电子转移(ET)和分子间 HAT 过程生成 O-或 C-中心自由基的能力也有很好的记录。控制有机转化中这种短寿命中间体反应性的目的促使我们调查:(i)叠氮自由基的历史及其结构特性(热力学、光谱学等),(ii)化学反应性和动力学,(iii)从各种前体制备 N˙的方法,(iv)在不饱和键官能化、C-H 官能化 HAT、串联和多组分反应领域中几种重要的叠氮自由基介导的转化,对潜在的反应性进行了批判性分析机会,在这篇综述中。