Ajitha Manjaly J, Haines Brandon E, Musaev Djamaladdin G
Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.
Organometallics. 2023 Feb 23;42(18):2467-2476. doi: 10.1021/acs.organomet.2c00554. eCollection 2023 Sep 25.
Unactivated C(sp)-H bonds are the most challenging substrate class for transition metal-catalyzed C-H halogenation. Recently, the Yu group [Liu, T.; Myers, M. C.; Yu, J. Q. , (1), 306-309] has demonstrated that a Cu/phenanthroline catalyst and BrN, generated from NBS and TMSN precursors, can achieve selective C-H bromination distal to a directing group. The current understanding of the mechanism of this reaction has left numerous questions unanswered. Here, we investigated the mechanism of Cu-catalyzed C(sp)-H bromination with distal site selectivity using density functional theory calculations. We found that this reaction starts with the Br-atom transfer from BrN to the Cu center that occurs via a small energy barrier at the singlet-triplet state seam of crossing. In the course of this reaction, the presence of the N-H bond in the substrate is critically important and acts as a directing group for enhancing the stability of the catalyst-substrate interaction and for the recruitment of the substrate to the catalyst. The required C-centered radical substrate formation occurs via direct C-H dehydrogenation by the Cu-coordinated N radical, rather than via the previously proposed N-H bond dehydrogenation and then the 1,5-H transfer from the γ-(C-H) bond to the N-radical center pathway. The C-H bond activation by the azide radical is a regioselectivity-controlling step. The following bromination of the C-centered radical by the Cu-coordinated bromine completes the product formation. This reaction step is the rate-limiting step, occurs at the singlet-to-triplet state seam of the crossing point, and is exergonic.
未活化的C(sp) - H键是过渡金属催化的C - H卤化反应中最具挑战性的底物类型。最近,余课题组[Liu, T.; Myers, M. C.; Yu, J. Q., (1), 306 - 309]证明,由NBS和TMSN前体生成的Cu/菲咯啉催化剂和BrN可以实现导向基团远端的选择性C - H溴化反应。目前对该反应机理的理解仍存在许多未解决的问题。在此,我们使用密度泛函理论计算研究了具有远端位点选择性的Cu催化C(sp) - H溴化反应的机理。我们发现该反应始于Br原子从BrN转移到Cu中心,这一过程通过单重态 - 三重态交叉能垒实现。在该反应过程中,底物中N - H键的存在至关重要,它作为导向基团增强了催化剂 - 底物相互作用的稳定性,并将底物吸引到催化剂上。所需的以C为中心的自由基底物的形成是通过Cu配位的N自由基直接使C - H脱氢,而不是通过先前提出的N - H键脱氢,然后γ - (C - H)键向N - 自由基中心进行1,5 - H转移的途径。叠氮自由基对C - H键的活化是区域选择性控制步骤。随后,Cu配位的溴对以C为中心的自由基进行溴化反应完成产物生成。该反应步骤是限速步骤,发生在交叉点的单重态到三重态的能垒处,并且是放能的。