Ruf Alexander, Kanawati Basem, Schmitt-Kopplin Philippe
Analytical BioGeoChemistry, Helmholtz Zentrum München, Munich, Germany.
Analytical Food Chemistry, Technische Universität München, Munich, Germany.
Rapid Commun Mass Spectrom. 2022 Jun 15;36(11):e9283. doi: 10.1002/rcm.9283.
Sugars are key molecules of life but challenging to detect via electrospray ionization mass spectrometry (ESI-MS). Unfortunately, sugars are challenging analytes for mass spectrometric methods due to their high gas-phase deprotonation energies and low gas-phase proton affinities which make them difficult to ionize in high abundance for MS detection.
Hydrogen-bond interactions in H PO -saccharide anionic systems were studied both experimentally (via electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, ESI-FT-ICR-MS) and computationally by several sophisticated density-functional theoretical methods (DFT and DFT-D3).
The H PO dopant boosts the detection of sugars up to 51-times in the case of sucrose and up to 263-times for glucose (at 0.1 ppm concentration level). H PO binds toward sugar molecules with noticeably more hydrogen bonds than the established dopant chloride Cl does, with increasing binding energies in the order: Monosaccharides < Trisaccharides < Disaccharides. Analysis of a complex oak plant sample revealed that NH H PO specifically labeled a diverse set of sugar-type plant metabolites in the form of [M + H PO ] complexes.
We reveal the mechanism of interaction of H PO with different sugars and glycosylated organic compounds, which significantly enhances their ionization in mass spectrometry. A computational and experimental investigation is presented. A strong correlation between the MS signal intensities of detected [M + H PO ] anions of different saccharides and their calculated dissociation enthalpies was revealed. Thus, the variation in MS signal intensities can be very well described to a large extent by the variation in calculated saccharide affinities toward the H PO dopant anion, showing that DFT-D3 can very well describe experimental FT-ICR-MS observations.
糖类是生命的关键分子,但通过电喷雾电离质谱法(ESI-MS)进行检测具有挑战性。不幸的是,由于糖类具有较高的气相去质子化能和较低的气相质子亲和力,使得它们难以在质谱检测中以高丰度离子化,因此对于质谱方法而言,糖类是具有挑战性的分析物。
通过实验(采用电喷雾电离傅里叶变换离子回旋共振质谱法,ESI-FT-ICR-MS)以及几种复杂的密度泛函理论方法(DFT和DFT-D3)进行计算,研究了H₃PO₄-糖类阴离子体系中的氢键相互作用。
在蔗糖的情况下,H₃PO₄掺杂剂可将糖类的检测提高51倍,对于葡萄糖则高达263倍(在0.1 ppm浓度水平下)。H₃PO₄与糖分子结合时形成的氢键明显比已有的掺杂剂氯离子Cl更多,结合能按以下顺序增加:单糖<三糖<二糖。对复杂的橡树植物样品进行分析表明,NH₄H₂PO₄以[M + H₂PO₄]络合物的形式特异性标记了多种糖类植物代谢物。
我们揭示了H₃PO₄与不同糖类和糖基化有机化合物的相互作用机制,这显著增强了它们在质谱中的离子化。本文进行了计算和实验研究。揭示了不同糖类检测到的[M + H₂PO₄]阴离子的质谱信号强度与其计算的解离焓之间的强相关性。因此,在很大程度上,质谱信号强度的变化可以通过计算得到的糖类对H₃PO₄掺杂剂阴离子的亲和力变化很好地描述,这表明DFT-D3可以很好地描述实验FT-ICR-MS观测结果。