Suppr超能文献

酿酒酵母中基因表达的自由度

Degree of Freedom of Gene Expression in Saccharomyces cerevisiae.

作者信息

Yang Zhen, Xu Feng, Xue Aijuan, Lv Hong, He Yungang

机构信息

Shanghai Fifth People's Hospital, Fudan Universitygrid.8547.e, Shanghai, China.

Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan Universitygrid.8547.e, Shanghai, China.

出版信息

Microbiol Spectr. 2022 Apr 27;10(2):e0083821. doi: 10.1128/spectrum.00838-21. Epub 2022 Mar 1.

Abstract

The complexity of genome-wide gene expression has not yet been adequately addressed due to a lack of comprehensive statistical analyses. In the present study, we introduce degree of freedom (DOF) as a summary statistic for evaluating gene expression complexity. Because DOF can be interpreted by a state-space representation, application of the DOF is highly useful for understanding gene activities. We used over 11,000 gene expression data sets to reveal that the DOF of gene expression in Saccharomyces cerevisiae is not greater than 450. We further demonstrated that various degrees of freedom of gene expression can be interpreted by different sequence motifs within promoter regions and Gene Ontology (GO) terms. The well-known TATA box is the most significant one among the identified motifs, while the GO term "ribosome genesis" is an associated biological process. On the basis of transcriptional freedom, our findings suggest that the regulation of gene expression can be modeled using only a few state variables. Yeast works like a well-organized factory. Each of its components works in its own way, while affecting the activities of others. The order of all activities is largely governed by the regulation of gene expression. In recent decades, biologists have recognized many regulations for yeast genes. However, it is not known how closely the regulation links each gene together to make all components of the cell work as a whole. In other words, biologists are very interested in how many independent control factors are needed to operate an artificial "cell" that works the same as a real one. In this work, we suggested that only 450 control factors were sufficient to represent the regulation of all 5800 yeast genes.

摘要

由于缺乏全面的统计分析,全基因组基因表达的复杂性尚未得到充分解决。在本研究中,我们引入自由度(DOF)作为评估基因表达复杂性的一个汇总统计量。由于自由度可以通过状态空间表示来解释,因此自由度的应用对于理解基因活动非常有用。我们使用了超过11000个基因表达数据集,以揭示酿酒酵母中基因表达的自由度不大于450。我们进一步证明,基因表达的不同自由度可以通过启动子区域内不同的序列基序和基因本体(GO)术语来解释。著名的TATA盒是所识别基序中最显著的一个,而GO术语“核糖体生物发生”是一个相关的生物学过程。基于转录自由度,我们的研究结果表明,基因表达的调控可以仅用几个状态变量来建模。酵母就像一个组织有序的工厂。它的每个组件都以自己的方式工作,同时影响其他组件的活动。所有活动的顺序在很大程度上受基因表达调控的支配。近几十年来,生物学家已经认识到许多酵母基因的调控方式。然而,尚不清楚这种调控如何紧密地将每个基因联系在一起,以使细胞的所有组件作为一个整体发挥作用。换句话说,生物学家非常感兴趣的是,操作一个与真实细胞相同的人工“细胞”需要多少个独立的控制因素。在这项工作中,我们表明仅450个控制因素就足以代表所有5800个酵母基因的调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d8d/9045123/d9969b11f2ee/spectrum.00838-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验