Suppr超能文献

基于脑功能网络的抑郁症识别研究

[Research on depression recognition based on brain function network].

作者信息

Zhang Bingtao, Zhou Wenying, Li Yanlin, Chang Wenwen, Xu Binbin

机构信息

School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China.

Key Laboratory of Opto-technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):47-55. doi: 10.7507/1001-5515.202108034.

Abstract

Traditional depression research based on electroencephalogram (EEG) regards electrodes as isolated nodes and ignores the correlation between them. So it is difficult to discover abnormal brain topology alters in patients with depression. To resolve this problem, this paper proposes a framework for depression recognition based on brain function network (BFN). To avoid the volume conductor effect, the phase lag index is used to construct BFN. BFN indexes closely related to the characteristics of "small world" and specific brain regions of minimum spanning tree were selected based on the information complementarity of weighted and binary BFN and then potential biomarkers of depression recognition are found based on the progressive index analysis strategy. The resting state EEG data of 48 subjects was used to verify this scheme. The results showed that the synchronization between groups was significantly changed in the left temporal, right parietal occipital and right frontal, the shortest path length and clustering coefficient of weighted BFN, the leaf scores of left temporal and right frontal and the diameter of right parietal occipital of binary BFN were correlated with patient health questionnaire 9-items (PHQ-9), and the highest recognition rate was 94.11%. In addition, the study found that compared with healthy controls, the information processing ability of patients with depression reduced significantly. The results of this study provide a new idea for the construction and analysis of BFN and a new method for exploring the potential markers of depression recognition.

摘要

基于脑电图(EEG)的传统抑郁症研究将电极视为孤立节点,忽略了它们之间的相关性。因此,很难发现抑郁症患者大脑拓扑结构的异常变化。为了解决这个问题,本文提出了一种基于脑功能网络(BFN)的抑郁症识别框架。为避免容积导体效应,采用相位滞后指数构建BFN。基于加权和二元BFN的信息互补性,选择与“小世界”特征和最小生成树特定脑区密切相关的BFN指标,然后基于渐进指数分析策略找到抑郁症识别的潜在生物标志物。使用48名受试者的静息态EEG数据对该方案进行验证。结果表明,组间同步性在左颞叶、右顶枕叶和右额叶有显著变化,加权BFN的最短路径长度和聚类系数、二元BFN的左颞叶和右额叶叶分数以及右顶枕叶直径与患者健康问卷9项(PHQ - 9)相关,最高识别率为94.11%。此外,研究发现与健康对照组相比,抑郁症患者的信息处理能力显著降低。本研究结果为BFN的构建和分析提供了新思路,为探索抑郁症识别潜在标志物提供了新方法。

相似文献

1
[Research on depression recognition based on brain function network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):47-55. doi: 10.7507/1001-5515.202108034.
2
Brain Functional Networks Based on Resting-State EEG Data for Major Depressive Disorder Analysis and Classification.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:215-229. doi: 10.1109/TNSRE.2020.3043426. Epub 2021 Mar 1.
3
Identifying depression disorder using multi-view high-order brain function network derived from electroencephalography signal.
Front Comput Neurosci. 2022 Oct 27;16:1046310. doi: 10.3389/fncom.2022.1046310. eCollection 2022.
4
Spatial-Temporal EEG Fusion Based on Neural Network for Major Depressive Disorder Detection.
Interdiscip Sci. 2023 Dec;15(4):542-559. doi: 10.1007/s12539-023-00567-x. Epub 2023 May 4.
5
High-order brain functional network for electroencephalography-based diagnosis of major depressive disorder.
Front Neurosci. 2022 Aug 9;16:976229. doi: 10.3389/fnins.2022.976229. eCollection 2022.
6
Effects of Transcranial Direct Current Stimulation on EEG Power and Brain Functional Network in Stroke Patients.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:335-345. doi: 10.1109/TNSRE.2022.3223116. Epub 2023 Jan 31.
8
Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing.
Clin Neurophysiol. 2015 Nov;126(11):2078-89. doi: 10.1016/j.clinph.2014.12.026. Epub 2015 Jan 19.

引用本文的文献

1
[A method of mental disorder recognition based on visibility graph].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Jun 25;40(3):442-449. doi: 10.7507/1001-5515.202208077.

本文引用的文献

1
Brain Functional Networks Based on Resting-State EEG Data for Major Depressive Disorder Analysis and Classification.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:215-229. doi: 10.1109/TNSRE.2020.3043426. Epub 2021 Mar 1.
2
Depression recognition using machine learning methods with different feature generation strategies.
Artif Intell Med. 2019 Aug;99:101696. doi: 10.1016/j.artmed.2019.07.004. Epub 2019 Jul 17.
3
Multimodal Depression Detection: Fusion of Electroencephalography and Paralinguistic Behaviors Using a Novel Strategy for Classifier Ensemble.
IEEE J Biomed Health Inform. 2019 Nov;23(6):2265-2275. doi: 10.1109/JBHI.2019.2938247. Epub 2019 Aug 29.
5
Graph Theory Analysis of Functional Connectivity in Major Depression Disorder With High-Density Resting State EEG Data.
IEEE Trans Neural Syst Rehabil Eng. 2019 Mar;27(3):429-439. doi: 10.1109/TNSRE.2019.2894423. Epub 2019 Jan 23.
6
Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients.
Brain Imaging Behav. 2020 Jun;14(3):653-667. doi: 10.1007/s11682-018-0003-1.
7
EEG-based mild depressive detection using feature selection methods and classifiers.
Comput Methods Programs Biomed. 2016 Nov;136:151-61. doi: 10.1016/j.cmpb.2016.08.010. Epub 2016 Aug 18.
8
The effect of epoch length on estimated EEG functional connectivity and brain network organisation.
J Neural Eng. 2016 Jun;13(3):036015. doi: 10.1088/1741-2560/13/3/036015. Epub 2016 May 3.
9
Removal of ocular artifacts in EEG--an improved approach combining DWT and ANC for portable applications.
IEEE J Biomed Health Inform. 2013 May;17(3):600-7. doi: 10.1109/jbhi.2013.2253614.
10
Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes.
Front Aging Neurosci. 2014 Feb 4;6:11. doi: 10.3389/fnagi.2014.00011. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验