Suppr超能文献

脑电图系列的相对功率和相干性与糖尿病患者的遗忘型轻度认知障碍有关。

Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes.

机构信息

Institute of Electrical Engineering, Yanshan University Qinhuangdao, China.

Department of Neurology, The Second Artillery General Hospital of PLA Beijing, China.

出版信息

Front Aging Neurosci. 2014 Feb 4;6:11. doi: 10.3389/fnagi.2014.00011. eCollection 2014.

Abstract

OBJECTIVE

Diabetes is a risk factor for dementia and mild cognitive impairment. The aim of this study was to investigate whether some features of resting-state EEG (rsEEG) could be applied as a biomarker to distinguish the subjects with amnestic mild cognitive impairment (aMCI) from normal cognitive function in type 2 diabetes.

MATERIALS AND METHODS

In this study, 28 patients with type 2 diabetes (16 aMCI patients and 12 controls) were investigated. Recording of the rsEEG series and neuropsychological assessments were performed. The rsEEG signal was first decomposed into delta, theta, alpha, beta, gamma frequency bands. The relative power of each given band/sum of power and the coherence of waves from different brain areas were calculated. The extracted features from rsEEG and neuropsychological assessments were analyzed as well.

RESULTS

The main findings of this study were that: (1) compared with the control group, the ratios of power in theta band [P(theta)] vs. power in alpha band [P(alpha)] [P(theta)/P(alpha)] in the frontal region and left temporal region were significantly higher for aMCI, and (2) for aMCI, the alpha coherences in posterior, fronto-right temporal, fronto-posterior, right temporo-posterior were decreased; the theta coherences in left central-right central (LC-RC) and left posterior-right posterior (LP-RP) regions were also decreased; but the delta coherences in left temporal-right temporal (LT-RT) region were increased.

CONCLUSION

The proposed indexes from rsEEG recordings could be employed to track cognitive function of diabetic patients and also to help in the diagnosis of those who develop aMCI.

摘要

目的

糖尿病是痴呆和轻度认知障碍的一个危险因素。本研究旨在探讨静息态脑电图(rsEEG)的某些特征是否可作为生物标志物,将 2 型糖尿病患者的遗忘型轻度认知障碍(aMCI)与正常认知功能区分开来。

材料和方法

本研究纳入 28 例 2 型糖尿病患者(16 例 aMCI 患者和 12 例对照组)。进行 rsEEG 系列记录和神经心理学评估。将 rsEEG 信号首先分解为 delta、theta、alpha、beta 和 gamma 频段。计算每个特定频段/功率总和的相对功率和来自不同脑区的波的相干性。还分析了 rsEEG 和神经心理学评估中提取的特征。

结果

本研究的主要发现为:(1)与对照组相比,aMCI 患者额区和左颞区的 theta 频段功率[P(theta)]与 alpha 频段功率[P(alpha)]的比值[P(theta)/P(alpha)]显著升高;(2)对于 aMCI,后区、额右颞区、额后区、右颞后区的 alpha 相干性降低;左中央-右中央(LC-RC)和左后-右后(LP-RP)区域的 theta 相干性降低;但左颞-右颞(LT-RT)区域的 delta 相干性增加。

结论

rsEEG 记录中的提出的指标可用于跟踪糖尿病患者的认知功能,也有助于诊断发生 aMCI 的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c15/3912457/9ade34607ae9/fnagi-06-00011-g0001.jpg

相似文献

1
Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes.
Front Aging Neurosci. 2014 Feb 4;6:11. doi: 10.3389/fnagi.2014.00011. eCollection 2014.
2
Complex network analysis of resting state EEG in amnestic mild cognitive impairment patients with type 2 diabetes.
Front Comput Neurosci. 2015 Oct 29;9:133. doi: 10.3389/fncom.2015.00133. eCollection 2015.
4
Characteristics of Resting State EEG Power in 80+-Year-Olds of Different Cognitive Status.
Front Aging Neurosci. 2021 Aug 11;13:675689. doi: 10.3389/fnagi.2021.675689. eCollection 2021.

引用本文的文献

1
DPD (DePression Detection) Net: a deep neural network for multimodal depression detection.
Health Inf Sci Syst. 2024 Nov 12;12(1):53. doi: 10.1007/s13755-024-00311-9. eCollection 2024 Dec.
2
How Do In-Car Navigation Aids Impair Expert Navigators' Spatial Learning Ability?
Ann Am Assoc Geogr. 2024 Jul 1;114(7):1483-1504. doi: 10.1080/24694452.2024.2356858. eCollection 2024.
3
Revealing brain's cognitive process deeply: a study of the consistent EEG patterns of audio-visual perceptual holistic.
Front Hum Neurosci. 2024 Mar 27;18:1377233. doi: 10.3389/fnhum.2024.1377233. eCollection 2024.
4
The evaluation of cEEGrids for fatigue detection in aviation.
Sleep Adv. 2024 Feb 6;5(1):zpae009. doi: 10.1093/sleepadvances/zpae009. eCollection 2024.
5
The applied principles of EEG analysis methods in neuroscience and clinical neurology.
Mil Med Res. 2023 Dec 19;10(1):67. doi: 10.1186/s40779-023-00502-7.
6
Resting-state electroencephalographic characteristics related to mild cognitive impairments.
Front Psychiatry. 2023 Sep 13;14:1231861. doi: 10.3389/fpsyt.2023.1231861. eCollection 2023.
7
Intermediate effects of mindfulness practice on the brain activity of college students: An EEG study.
IBRO Neurosci Rep. 2023 Mar 8;14:308-319. doi: 10.1016/j.ibneur.2023.03.003. eCollection 2023 Jun.
8
Heartfulness Meditation Alters Electroencephalogram Oscillations: An Electroencephalogram Study.
Int J Yoga. 2022 Sep-Dec;15(3):205-214. doi: 10.4103/ijoy.ijoy_138_22. Epub 2023 Jan 16.
9
The New Field of Network Physiology: Building the Human Physiolome.
Front Netw Physiol. 2021 Jun 30;1:711778. doi: 10.3389/fnetp.2021.711778. eCollection 2021.
10
Aging-induced alterations in EEG spectral power associated with graded force motor tasks.
Exp Brain Res. 2023 Mar;241(3):905-915. doi: 10.1007/s00221-023-06572-2. Epub 2023 Feb 20.

本文引用的文献

1
Index of alpha/theta ratio of the electroencephalogram: a new marker for Alzheimer's disease.
Front Aging Neurosci. 2013 Oct 9;5:60. doi: 10.3389/fnagi.2013.00060. eCollection 2013.
3
Cortical sources of resting state electroencephalographic alpha rhythms deteriorate across time in subjects with amnesic mild cognitive impairment.
Neurobiol Aging. 2014 Jan;35(1):130-42. doi: 10.1016/j.neurobiolaging.2013.06.019. Epub 2013 Jul 30.
4
Association of diabetes with amnestic and nonamnestic mild cognitive impairment.
Alzheimers Dement. 2014 Jan;10(1):18-26. doi: 10.1016/j.jalz.2013.01.001. Epub 2013 Apr 3.
6
Diagnosis and classification of diabetes mellitus.
Diabetes Care. 2013 Jan;36 Suppl 1(Suppl 1):S67-74. doi: 10.2337/dc13-S067.
7
[Diabetes mellitus and dementia].
Vnitr Lek. 2012 Apr;58(4):305-8.
9
Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline.
Neurology. 2011 Aug 2;77(5):461-8. doi: 10.1212/WNL.0b013e318227b227.
10
Region and frequency specific changes of spectral power in Alzheimer's disease and mild cognitive impairment.
Clin Neurophysiol. 2011 Nov;122(11):2169-76. doi: 10.1016/j.clinph.2011.03.023. Epub 2011 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验