Suppr超能文献

基于神经网络的时空脑电图融合用于重度抑郁症检测

Spatial-Temporal EEG Fusion Based on Neural Network for Major Depressive Disorder Detection.

作者信息

Zhang Bingtao, Wei Dan, Yan Guanghui, Li Xiulan, Su Yun, Cai Hanshu

机构信息

School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.

Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou, 730070, China.

出版信息

Interdiscip Sci. 2023 Dec;15(4):542-559. doi: 10.1007/s12539-023-00567-x. Epub 2023 May 4.

Abstract

In view of the major depressive disorder characteristics such as high mortality as well as high recurrence, it is important to explore an objective and effective detection method for major depressive disorder. Considering the advantages complementary of different machine learning algorithms in information mining process, as well as the fusion complementary of different information, in this study, the spatial-temporal electroencephalography fusion framework using neural network is proposed for major depressive disorder detection. Since electroencephalography is a typical time series signal, we introduce recurrent neural network embedded in long short-term memory unit for extract temporal domain features to solve the problem of long-distance information dependence. To reduce the volume conductor effect, the temporal electroencephalography data are mapping into a spatial brain functional network using phase lag index, then the spatial domain features were extracted from brain functional network using 2D convolutional neural networks. Considering the complementarity between different types of features, the spatial-temporal electroencephalography features are fused to achieve data diversity. The experimental results show that spatial-temporal features fusion can improve the detection accuracy of major depressive disorder with a highest of 96.33%. In addition, our research also found that theta, alpha, and full frequency band in brain regions of left frontal, left central, right temporal are closely related to MDD detection, especially theta frequency band in left frontal region. Only using single-dimension EEG data as decision basis, it is difficult to fully explore the valuable information hidden in the data, which affects the overall detection performance of MDD. Meanwhile, different algorithms have their own advantages for different application scenarios. Ideally, different algorithms should use their respective advantages to jointly address complex problems in engineering fields. To this end, we propose a computer-aided MDD detection framework based on spatial-temporal EEG fusion using neural network, as shown in Fig. 1. The simplified process is as follows: (1) Raw EEG data acquisition and preprocessing. (2) The time series EEG data of each channel are input as recurrent neural network (RNN), and RNN is used to process and extract temporal domain (TD) features. (3) The BFN among different EEG channels is constructed, and CNN is used to process and extract the spatial domain (SD) features of the BFN. (4) Based on the theory of information complementarity, the spatial-temporal information is fused to realize efficient MDD detection. Fig. 1 MDD detection framework based on spatial-temporal EEG fusion.

摘要

鉴于重度抑郁症具有高死亡率和高复发率等特征,探索一种客观有效的重度抑郁症检测方法至关重要。考虑到不同机器学习算法在信息挖掘过程中的优势互补,以及不同信息的融合互补,本研究提出了一种基于神经网络的用于重度抑郁症检测的时空脑电图融合框架。由于脑电图是一种典型的时间序列信号,我们引入嵌入长短期记忆单元的循环神经网络来提取时域特征,以解决长距离信息依赖问题。为了减少容积导体效应,使用相位滞后指数将时域脑电图数据映射到空间脑功能网络,然后使用二维卷积神经网络从脑功能网络中提取空间域特征。考虑到不同类型特征之间的互补性,对时空脑电图特征进行融合以实现数据多样性。实验结果表明,时空特征融合可以提高重度抑郁症的检测准确率,最高可达96.33%。此外,我们的研究还发现,左额叶、左中央、右颞叶脑区的θ波、α波和全频段与重度抑郁症检测密切相关,尤其是左额叶区域的θ频段。仅使用单维脑电图数据作为决策依据,难以充分挖掘数据中隐藏的有价值信息,这会影响重度抑郁症的整体检测性能。同时,不同算法在不同应用场景中各有优势。理想情况下,不同算法应利用各自优势共同解决工程领域中的复杂问题。为此,我们提出了一种基于神经网络的时空脑电图融合的计算机辅助重度抑郁症检测框架,如图1所示。简化过程如下:(1)原始脑电图数据采集与预处理。(2)将每个通道的时间序列脑电图数据输入循环神经网络(RNN),RNN用于处理和提取时域(TD)特征。(3)构建不同脑电图通道之间的脑功能网络(BFN),并使用卷积神经网络(CNN)处理和提取BFN的空间域(SD)特征。(4)基于信息互补理论,融合时空信息以实现高效的重度抑郁症检测。图1基于时空脑电图融合的重度抑郁症检测框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6807/10158716/7519f090278b/12539_2023_567_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验