Suppr超能文献

胶态相分离接近凝胶化时速度减缓的微观结构起源。

Microscopic structural origin behind slowing down of colloidal phase separation approaching gelation.

机构信息

Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

出版信息

J Chem Phys. 2022 Feb 28;156(8):084904. doi: 10.1063/5.0080403.

Abstract

The gelation of colloidal particles interacting through a short-range attraction is widely recognized as a consequence of the dynamic arrest of phase separation into colloid-rich and solvent-rich phases. However, the microscopic origin behind the slowing down and dynamic arrest of phase separation remains elusive. In order to access microscopic structural changes through the entire process of gelation in a continuous fashion, we used core-shell fluorescent colloidal particles, laser scanning confocal microscopy, and a unique experimental protocol that allows us to initiate phase separation instantaneously and gently. Combining these enables us to track the trajectories of individual particles seamlessly during the whole phase-separation process from the early stage to the late arresting stage. We reveal that the enhancement of local packing and the resulting formation of locally stable rigid structures slow down the phase-separation process and arrest it to form a gel with an average coordination number of z = 6-7. This result supports a mechanical perspective on the dynamic arrest of sticky-sphere systems based on the microstructure, replacing conventional explanations based on the macroscopic vitrification of the colloid-rich phase. Our findings illuminate the microscopic mechanisms behind the dynamic arrest of colloidal phase separation, the emergence of mechanical rigidity, and the stability of colloidal gels.

摘要

胶体质点通过短程吸引力相互作用而发生胶凝,这被广泛认为是相分离动力学停滞的结果,分为富含胶体和富含溶剂的相。然而,相分离动力学停滞的微观起源仍然难以捉摸。为了以连续的方式了解胶凝整个过程中的微观结构变化,我们使用核壳荧光胶体粒子、激光扫描共聚焦显微镜和独特的实验方案,能够即时、温和地引发相分离。将这些方法结合起来,可以在整个相分离过程中无缝地跟踪单个粒子的轨迹,从早期阶段到后期的停滞阶段。我们揭示了局部堆积的增强和由此形成的局部稳定刚性结构会减缓相分离过程,并将其停滞,形成具有平均配位数 z=6-7 的凝胶。这一结果基于微观结构支持了粘性球系统的动力学停滞的力学观点,取代了基于富含胶体相宏观玻璃化的传统解释。我们的发现阐明了胶体相分离动力学停滞、力学刚性出现和胶体凝胶稳定性的微观机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验