Suppr超能文献

膜电位传感:单粒子光学电生理学的材料设计与方法开发

Membrane potential sensing: Material design and method development for single particle optical electrophysiology.

作者信息

Roy Debjit, Shapira Zehavit, Weiss Shimon

机构信息

Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA.

Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.

出版信息

J Chem Phys. 2022 Feb 28;156(8):084201. doi: 10.1063/5.0076522.

Abstract

We review the development of "single" nanoparticle-based inorganic and organic voltage sensors, which can eventually become a viable tool for "non-genetic optogenetics." The voltage sensing is accomplished with optical imaging at the fast temporal response and high spatial resolutions in a large field of view. Inorganic voltage nanosensors utilize the Quantum Confined Stark Effect (QCSE) to sense local electric fields. Engineered nanoparticles achieve substantial single-particle voltage sensitivity (∼2% Δλ spectral Stark shift up to ∼30% ΔF/F per 160 mV) at room temperature due to enhanced charge separation. A dedicated home-built fluorescence microscope records spectrally resolved images to measure the QCSE induced spectral shift at the single-particle level. Biomaterial based surface ligands are designed and developed based on theoretical simulations. The hybrid nanobiomaterials satisfy anisotropic facet-selective coating, enabling effective compartmentalization beyond non-specific staining. Self-spiking- and patched-HEK293 cells and cortical neurons, when stained with hybrid nanobiomaterials, show clear photoluminescence intensity changes in response to membrane potential (MP) changes. Organic voltage nanosensors based on polystyrene beads and nanodisk technology utilize Fluorescence (Förster) Resonance Energy Transfer (FRET) to sense local electric fields. Voltage sensing FRET pairs achieve voltage sensitivity up to ∼35% ΔF/F per 120 mV in cultures. Non-invasive MP recording from individual targeted sites (synapses and spines) with nanodisks has been realized. However, both of these QCSE- and FRET-based voltage nanosensors yet need to reach the milestone of recording individual action potentials from individual targeted sites.

摘要

我们回顾了基于“单个”纳米颗粒的无机和有机电压传感器的发展情况,这些传感器最终可能成为“非基因光遗传学”的可行工具。电压传感是通过光学成像在大视野中以快速的时间响应和高空间分辨率来完成的。无机电压纳米传感器利用量子限制斯塔克效应(QCSE)来感知局部电场。由于电荷分离增强,工程纳米颗粒在室温下实现了显著的单颗粒电压灵敏度(每160 mV高达约2%的Δλ光谱斯塔克位移,高达约30%的ΔF/F)。一台专门自制的荧光显微镜记录光谱分辨图像,以测量单颗粒水平上QCSE诱导的光谱位移。基于理论模拟设计并开发了基于生物材料的表面配体。这种混合纳米生物材料满足各向异性的面选择性涂层,能够实现有效的区室化,避免非特异性染色。用混合纳米生物材料染色时,自发放电和膜片钳记录的HEK293细胞以及皮质神经元显示出响应膜电位(MP)变化的清晰光致发光强度变化。基于聚苯乙烯珠和纳米盘技术的有机电压传感器利用荧光(Förster)共振能量转移(FRET)来感知局部电场。电压传感FRET对在培养物中实现了高达每120 mV约35%的ΔF/F的电压灵敏度。已经实现了用纳米盘从单个目标位点(突触和棘突)进行非侵入性MP记录。然而,这两种基于QCSE和FRET的电压纳米传感器都还需要达到从单个目标位点记录单个动作电位的里程碑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验