Benyamin Marcus S, Perisin Matthew P, Hellman Caleb A, Schwalm Nathan D, Jahnke Justin P, Sund Christian J
Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA.
iScience. 2023 Jun 17;26(7):107140. doi: 10.1016/j.isci.2023.107140. eCollection 2023 Jul 21.
Transmembrane electrochemical gradients drive solute uptake and constitute a substantial fraction of the cellular energy pool in bacteria. These gradients act not only as "homeostatic contributors," but also play a dynamic and keystone role in several bacterial functions, including sensing, stress response, and metabolism. At the system level, multiple gradients interact with ion transporters and bacterial behavior in a complex, rapid, and emergent manner; consequently, experiments alone cannot untangle their interdependencies. Electrochemical gradient modeling provides a general framework to understand these interactions and their underlying mechanisms. We quantify the generation, maintenance, and interactions of electrical, proton, and potassium potential gradients under lactic acid-stress and lactic acid fermentation. Further, we elucidate a gradient-mediated mechanism for intracellular pH sensing and stress response. We demonstrate that this gradient model can yield insights on the energetic limitations of membrane transport, and can predict bacterial behavior across changing environments.
跨膜电化学梯度驱动溶质摄取,并构成细菌细胞能量池的很大一部分。这些梯度不仅作为“稳态贡献者”发挥作用,而且在包括传感、应激反应和代谢在内的多种细菌功能中发挥动态和关键作用。在系统层面,多个梯度以复杂、快速和涌现的方式与离子转运体和细菌行为相互作用;因此,仅靠实验无法理清它们之间的相互依存关系。电化学梯度建模提供了一个理解这些相互作用及其潜在机制的通用框架。我们量化了乳酸应激和乳酸发酵条件下电势、质子势和钾离子势梯度的产生、维持和相互作用。此外,我们阐明了一种梯度介导的细胞内pH传感和应激反应机制。我们证明,这种梯度模型可以深入了解膜运输的能量限制,并可以预测细菌在不断变化的环境中的行为。