Instituto Geológico y Minero de España (IGME-CSIC), C/Manuel Lasala, 44, 9°B, 50006 Zaragoza, Spain.
Grupo Aragosaurus-IUCA, Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.
Proc Biol Sci. 2022 Mar 9;289(1970):20212733. doi: 10.1098/rspb.2021.2733. Epub 2022 Mar 2.
Echinoderms are characterized by a distinctive high-magnesium calcite endoskeleton as adults, but elements of this have been drastically reduced in some groups. Herein, we describe a new pentaradial echinoderm, n. gen. n. sp., which provides, to our knowledge, the oldest evidence of secondary non-mineralization of the echinoderm skeleton. This material was collected from the Cambrian Kinzers Formation in York (Pennsylvania, USA) and is dated as 510 Ma. Detailed morphological observations demonstrate that the ambulacra (i.e. axial region) are composed of flooring and cover plates, but the rest of the body (i.e. extraxial region) is preserved as a dark film and lacks any evidence of skeletal plating. Moreover, X-ray fluorescence analysis reveals that the axial region is elevated in iron. Based on our morphological and chemical data and on taphonomic comparisons with other fossils from the Kinzers Formation, we infer that the axial region was originally calcified, while the extraxial region was non-mineralized. Phylogenetic analyses recover as an edrioasteroid, indicating that this partial absence of skeleton resulted from a secondary reduction. We hypothesize that skeletal reduction resulted from lack of expression of the skeletogenic gene regulatory network in the extraxial body wall during development. Secondary reduction of the skeleton in might have allowed for greater flexibility of the body wall.
棘皮动物的特征是成年后具有独特的高镁方解石内骨骼,但在某些群体中,这些元素已经大大减少。本文描述了一种新的五辐射棘皮动物,n.属。n.种,据我们所知,这是棘皮动物骨骼二次非矿化的最古老证据。该材料来自美国宾夕法尼亚州约克市的寒武纪金泽斯组,其年代为 5.1 亿年前。详细的形态观察表明,腕足类(即轴向区域)由地板和盖板组成,但身体的其余部分(即体腔区域)则保存为黑色薄膜,没有任何骨骼板的证据。此外,X 射线荧光分析表明,轴向区域的铁含量升高。基于我们的形态学和化学数据,以及与金泽斯组其他化石的埋藏学比较,我们推断轴向区域最初是钙化的,而体腔区域是非矿化的。系统发育分析将 归为 edrioasteroid,表明这种部分缺乏骨骼是由二次减少引起的。我们假设骨骼减少是由于在发育过程中体腔壁中骨骼发生基因调控网络的表达缺失所致。骨骼的二次减少可能使体壁具有更大的灵活性。