Suppr超能文献

基于智能手机的糖尿病视网膜病变检测的优化混合机器学习方法

Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection.

作者信息

Gupta Shubhi, Thakur Sanjeev, Gupta Ashutosh

机构信息

Department of Computer Science, Amity University, Uttar Pradesh, India.

Amity University, Uttar Pradesh, India.

出版信息

Multimed Tools Appl. 2022;81(10):14475-14501. doi: 10.1007/s11042-022-12103-y. Epub 2022 Feb 25.

Abstract

Diabetic Retinopathy (DR) is defined as the Diabetes Mellitus difficulty that harms the blood vessels in the retina. It is also known as a silent disease and cause mild vision issues or no symptoms. In order to enhance the chances of effective treatment, yearly eye tests are vital for premature discovery. Hence, it uses fundus cameras for capturing retinal images, but due to its size and cost, it is a troublesome for extensive screening. Therefore, the smartphones are utilized for scheming low-power, small-sized, and reasonable retinal imaging schemes to activate automated DR detection and DR screening. In this article, the new DIY (do it yourself) smartphone enabled camera is used for smartphone based DR detection. Initially, the preprocessing like green channel transformation and CLAHE (Contrast Limited Adaptive Histogram Equalization) are performed. Further, the segmentation process starts with optic disc segmentation by WT (watershed transform) and abnormality segmentation (Exudates, microaneurysms, haemorrhages, and IRMA) by Triplet half band filter bank (THFB). Then the different features are extracted by Haralick and ADTCWT (Anisotropic Dual Tree Complex Wavelet Transform) methods. Using life choice-based optimizer (LCBO) algorithm, the optimal features are chosen from the mined features. Then the selected features are applied to the optimized hybrid ML (machine learning) classifier with the combination of NN and DCNN (Deep Convolutional Neural Network) in which the SSD (Social Ski-Driver) is utilized for the best weight values of hybrid classifier to categorize the severity level as mild DR, severe DR, normal, moderate DR, and Proliferative DR. The proposed work is simulated in python environment and to test the efficiency of the proposed scheme the datasets like APTOS-2019-Blindness-Detection, and EyePacs are used. The model has been evaluated using different performance metrics. The simulation results verified that the suggested scheme is provides well accuracy for each dataset than other current approaches.

摘要

糖尿病视网膜病变(DR)被定义为糖尿病引发的一种病症,它会损害视网膜中的血管。它也被称为一种隐匿性疾病,可能导致轻微视力问题或毫无症状。为了增加有效治疗的机会,每年进行眼部检查对于早期发现至关重要。因此,人们使用眼底相机来拍摄视网膜图像,但由于其尺寸和成本,它对于大规模筛查来说很麻烦。所以,智能手机被用于设计低功耗、小尺寸且经济的视网膜成像方案,以实现糖尿病视网膜病变的自动检测和筛查。在本文中,新型的可自行组装(DIY)的智能手机相机被用于基于智能手机的糖尿病视网膜病变检测。首先,进行诸如绿色通道变换和对比度受限自适应直方图均衡化(CLAHE)等预处理。进一步地,分割过程从通过分水岭变换(WT)进行视盘分割以及通过三重半带滤波器组(THFB)进行异常分割(渗出物、微动脉瘤、出血和视网膜内微血管异常(IRMA))开始。然后通过哈拉里克(Haralick)方法和各向异性双树复数小波变换(ADTCWT)方法提取不同特征。使用基于生活选择的优化器(LCBO)算法,从挖掘出的特征中选择最优特征。然后将所选特征应用于优化后的混合机器学习(ML)分类器,该分类器结合了神经网络(NN)和深度卷积神经网络(DCNN),其中使用社会滑雪驾驶员(SSD)来确定混合分类器的最佳权重值,以将严重程度级别分类为轻度糖尿病视网膜病变、重度糖尿病视网膜病变、正常、中度糖尿病视网膜病变和增殖性糖尿病视网膜病变。所提出的工作在Python环境中进行模拟,并使用诸如APTOS - 2019 - 失明检测和EyePacs等数据集来测试所提方案的效率。该模型已使用不同的性能指标进行评估。模拟结果证实,与其他当前方法相比,所建议的方案对每个数据集都具有良好的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/800c/8876080/40dc1ecc5d7b/11042_2022_12103_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验