Suppr超能文献

RetinoDeep:利用深度学习模型进行晚期视网膜病变诊断

RetinoDeep: Leveraging Deep Learning Models for Advanced Retinopathy Diagnostics.

作者信息

Kansal Sachin, Mishra Bajrangi Kumar, Sethi Saniya, Vinayak Kanika, Kansal Priya, Narayan Jyotindra

机构信息

Computer Science Engineering Department, Thapar Institute of Engineering Technology, Patiala 147004, Punjab, India.

Civil Engineering Department, Thapar Institute of Engineering Technology, Patiala 147004, Punjab, India.

出版信息

Sensors (Basel). 2025 Aug 13;25(16):5019. doi: 10.3390/s25165019.

Abstract

Diabetic retinopathy (DR), a leading cause of vision loss worldwide, poses a critical challenge to healthcare systems due to its silent progression and the reliance on labor-intensive, subjective manual screening by ophthalmologists, especially amid a global shortage of eye care specialists. Addressing the pressing need for scalable, objective, and interpretable diagnostic tools, this work introduces RetinoDeep-deep learning frameworks integrating hybrid architectures and explainable AI to enhance the automated detection and classification of DR across seven severity levels. Specifically, we propose four novel models: an EfficientNetB0 combined with an SPCL transformer for robust global feature extraction; a ResNet50 ensembled with Bi-LSTM to synergize spatial and sequential learning; a Bi-LSTM optimized through genetic algorithms for hyperparameter tuning; and a Bi-LSTM with SHAP explainability to enhance model transparency and clinical trustworthiness. The models were trained and evaluated on a curated dataset of 757 retinal fundus images, augmented to improve generalization, and benchmarked against state-of-the-art baselines (including EfficientNetB0, Hybrid Bi-LSTM with EfficientNetB0, Hybrid Bi-GRU with EfficientNetB0, ResNet with filter enhancements, Bi-LSTM optimized using Random Search Algorithm (RSA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and a standard Convolutional Neural Network (CNN)), using metrics such as accuracy, F1-score, and precision. Notably, the Bi-LSTM with Particle Swarm Optimization (PSO) outperformed other configurations, achieving superior stability and generalization, while SHAP visualizations confirmed alignment between learned features and key retinal biomarkers, reinforcing the system's interpretability. By combining cutting-edge neural architectures, advanced optimization, and explainable AI, this work sets a new standard for DR screening systems, promising not only improved diagnostic performance but also potential integration into real-world clinical workflows.

摘要

糖尿病视网膜病变(DR)是全球视力丧失的主要原因,因其进展隐匿且依赖眼科医生进行劳动强度大、主观的人工筛查,尤其是在全球眼科护理专家短缺的情况下,给医疗保健系统带来了严峻挑战。为满足对可扩展、客观且可解释的诊断工具的迫切需求,本研究引入了RetinoDeep深度学习框架,该框架集成了混合架构和可解释人工智能,以增强对DR七个严重程度级别的自动检测和分类。具体而言,我们提出了四种新型模型:一种结合SPCL变压器的EfficientNetB0,用于强大的全局特征提取;一种与双向长短期记忆网络(Bi-LSTM)集成的ResNet50,以协同空间和序列学习;一种通过遗传算法优化超参数调整的Bi-LSTM;以及一种具有SHAP可解释性的Bi-LSTM,以提高模型透明度和临床可信度。这些模型在一个由757张视网膜眼底图像组成的精选数据集上进行训练和评估,该数据集经过扩充以提高泛化能力,并与包括EfficientNetB0、与EfficientNetB0结合的混合Bi-LSTM、与EfficientNetB0结合的混合Bi-GRU、具有滤波器增强的ResNet、使用随机搜索算法(RSA)、粒子群优化(PSO)、蚁群优化(ACO)优化以及标准卷积神经网络(CNN)在内的现有最先进基线进行基准测试,使用准确率、F1分数和精确率等指标。值得注意的是,采用粒子群优化(PSO)的Bi-LSTM优于其他配置,实现了卓越的稳定性和泛化能力,而SHAP可视化证实了所学特征与关键视网膜生物标志物之间的一致性,增强了系统的可解释性。通过结合前沿神经架构、先进优化和可解释人工智能,本研究为DR筛查系统树立了新标准,不仅有望提高诊断性能,还可能集成到实际临床工作流程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bb1/12390166/5a6d1d64bf1f/sensors-25-05019-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验