Suppr超能文献

利用优化工具提高分离菌的生长和生物分子(碳水化合物、蛋白质和叶绿素)的产量。

Enhancement of growth and biomolecules (carbohydrates, proteins, and chlorophylls) of isolated using optimization tools.

机构信息

Department of Chemical Engineering, National Institute of Technology Agartala, Agartala, India.

Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India.

出版信息

Prep Biochem Biotechnol. 2022;52(10):1173-1189. doi: 10.1080/10826068.2022.2033995. Epub 2022 Mar 2.

Abstract

The production of multiple products from microalgae is essential for economic sustainability and the knowledge of optimum cultivation conditions for high growth and biomolecule synthesis of a microalgal strain is the prerequisite for its commercial production. In this work, optimization of nutrient concentrations for the cultivation of isolated was performed by manipulating nine nutrients with the objectives of maximization of growth, carbohydrate, protein, and chlorophyll contents. Experiments were designed and effects of the parameters were studied using Taguchi orthogonal array (TOA). Experimental results of TOA were used for modeling artificial neural networks (ANN) followed by the optimization using genetic algorithm (GA) to find global optimal solutions. Results showed an increase of 36, 88, 36, and 88% for growth, carbohydrates, proteins, and chlorophylls, respectively, at optimal combinations of parameters given by TOA. Results obtained through the ANN-GA optimization were 9, 10, and 3% more compared to the TOA for biomass, carbohydrates, and chlorophylls, respectively with experimental verification. Nitrates and bicarbonate were found to play the most pivotal role in biomass and biomolecule synthesis of the isolated microalgal strain. Results of the current investigation can be used in the industrial scale-up for the production of multiple products using the biorefinery approach.

摘要

从微藻中生产多种产品对于经济可持续性至关重要,而了解微藻菌株的最佳培养条件对于其商业生产是必不可少的,因为这些条件可以实现其高生长和生物分子合成。在这项工作中,通过操纵九种营养物质来优化分离的 的培养条件,目标是最大化生长、碳水化合物、蛋白质和叶绿素含量。使用 Taguchi 正交数组 (TOA) 设计实验并研究参数的影响。TOA 的实验结果用于对人工神经网络 (ANN) 进行建模,然后使用遗传算法 (GA) 进行优化以找到全局最优解。结果表明,在 TOA 给出的最佳参数组合下,生长、碳水化合物、蛋白质和叶绿素的增长率分别增加了 36%、88%、36%和 88%。通过 ANN-GA 优化获得的结果与 TOA 相比,生物量、碳水化合物和叶绿素分别高出 9%、10%和 3%,并进行了实验验证。结果表明,硝酸盐和碳酸氢盐在生物量和生物分子合成中发挥了最重要的作用。本研究的结果可用于采用生物炼制方法在工业规模上生产多种产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验