Yao Zhiqiang, Wang Chenfeng, Wang Zengyao, Liu Guanglei, Bowers Crystal, Dong Pei, Ye Mingxin, Shen Jianfeng
Institute of Special Materials and Technology, Fudan University, Shanghai 200433, China.
Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China.
Dalton Trans. 2022 Mar 15;51(11):4532-4540. doi: 10.1039/d2dt00022a.
The development of active and cost-effective bifunctional catalysts is crucial for water dissociation through electrolysis. In this study, bifunctional catalysts with Ni nanoparticles (NPs) anchored on MoO nanorods have been synthesized dissolution of NiMoO-ZIF under an inert atmosphere without using hydrogen gas. The Ni-MoO catalyst exhibits high electrocatalytic activity by modulating the calcination temperature. Benefitingfrom the MOF transformation and accompanying Ni particles' outward diffusion, a precisely designed interface heterostructure between Ni and MoO was constructed. As a result, the optimized Ni-MoO catalyst achieves extremely low overpotentials of only 24 mV and 275 mV at 10 mA cm for the hydrogen evolution reaction and oxygen evolution reaction, respectively. Furthermore, the catalyst required a small cell voltage of 1.55 V to deliver a current density of 10 mA cm and remained stable over 20 h for overall water splitting. The proposed MOF-derived heterojunction protocol provides a general approach for designing and fabricating transition metal oxide catalysts for water electrolysis.
开发具有活性且经济高效的双功能催化剂对于通过电解实现水分解至关重要。在本研究中,已经合成了镍纳米颗粒(NPs)锚定在氧化钼纳米棒上的双功能催化剂,通过在惰性气氛下溶解镍钼酸锌咪唑框架(NiMoO-ZIF)而无需使用氢气。通过调节煅烧温度,镍-氧化钼催化剂表现出高电催化活性。受益于金属有机框架(MOF)转变以及伴随的镍颗粒向外扩散,构建了镍与氧化钼之间精确设计的界面异质结构。结果,优化后的镍-氧化钼催化剂在析氢反应和析氧反应中,在10 mA cm²时分别实现了仅24 mV和275 mV的极低过电位。此外,该催化剂在全水解时需要1.55 V的小电池电压来提供10 mA cm²的电流密度,并且在20小时内保持稳定。所提出的源自MOF的异质结方案为设计和制造用于水电解的过渡金属氧化物催化剂提供了一种通用方法。