Suppr超能文献

用于将间充质干细胞定向分化为谱系受限矿化组织的精密工程微环境。

Precision-engineered niche for directed differentiation of MSCs to lineage-restricted mineralized tissues.

作者信息

Rahman Saeed Ur, Ponnusamy Sasikumar, Nagrath Malvika, Arany Praveen R

机构信息

Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.

Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.

出版信息

J Tissue Eng. 2022 Feb 23;13:20417314211073934. doi: 10.1177/20417314211073934. eCollection 2022 Jan-Dec.

Abstract

The major difference between tissue healing and regeneration is the extent of instructional cues available to precisely direct the biological response. A classic example is reparative or osteodentin that is seen in response to physicochemical injury to the pulp-dentin complex. Dentin regeneration can direct the differentiation of dental stem cells using concerted actions of both soluble (biomolecules, agonists, and antagonists) and insoluble (matrix topology) cues. The major purpose of this study was to examine the synergistic combination of two discrete biomaterial approaches by utilizing nanofiber scaffolds in discrete configurations (aligned or random) with incorporated polymeric microspheres capable of controlled release of growth factors. Further, to ensure appropriate disinfection for clinical use, Radio-Frequency Glow Discharge (RFGD) treatments were utilized, followed by seeding with a mesenchymal stem cell (MSC) line. SEM analysis revealed electrospinning generated controlled architectural features that significantly improved MSC adhesion and proliferation on the aligned nanofiber scaffolds compared to randomly oriented scaffolds. These responses were further enhanced by RFGD pre-treatments. These enhanced cell adhesion and proliferative responses could be attributed to matrix-induced Wnt signaling that was abrogated by pre-treatments with anti-Wnt3a neutralizing antibodies. Next, we incorporated controlled-release microspheres within these electrospun scaffolds with either TGF-β1 or BMP4. We observed that these scaffolds could selectively induce dentinogenic or osteogenic markers (DSPP, Runx2, and BSP) and mineralization. This work demonstrates the utility of a novel, modular combinatorial scaffold system capable of lineage-restricted differentiation into bone or dentin. Future validation of this scaffold system in vivo as a pulp capping agent represents an innovative dentin regenerative approach capable of preserving tooth pulp vitality.

摘要

组织愈合与再生之间的主要区别在于可用于精确指导生物学反应的指令性信号的程度。一个典型的例子是修复性牙本质或骨样牙本质,它是牙髓 - 牙本质复合体受到物理化学损伤后的反应。牙本质再生可通过可溶性(生物分子、激动剂和拮抗剂)和不可溶性(基质拓扑结构)信号的协同作用来指导牙干细胞的分化。本研究的主要目的是通过利用具有不同构型(排列或随机)的纳米纤维支架与能够控制释放生长因子的聚合物微球相结合,来研究两种不同生物材料方法的协同组合。此外,为确保临床使用时的适当消毒,采用了射频辉光放电(RFGD)处理,随后接种间充质干细胞(MSC)系。扫描电子显微镜(SEM)分析显示,静电纺丝产生了可控的结构特征,与随机取向的支架相比,排列的纳米纤维支架上的MSC黏附与增殖显著改善。RFGD预处理进一步增强了这些反应。这些增强的细胞黏附和增殖反应可归因于基质诱导的Wnt信号传导,而抗Wnt3a中和抗体预处理可消除该信号传导。接下来,我们将可控制释放的微球与TGF-β1或BMP4一起掺入这些静电纺丝支架中。我们观察到这些支架可以选择性地诱导牙本质生成或成骨标记物(DSPP、Runx2和BSP)以及矿化。这项工作证明了一种新型模块化组合支架系统的实用性,该系统能够进行谱系限制分化为骨或牙本质。该支架系统作为牙髓盖髓剂在体内的未来验证代表了一种能够保留牙髓活力的创新性牙本质再生方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7f9/8883406/b46576c1bef8/10.1177_20417314211073934-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验