Suppr超能文献

如何提供帮助?人机协作中的支持行为与个性化

How to be Helpful? Supportive Behaviors and Personalization for Human-Robot Collaboration.

作者信息

Mangin Olivier, Roncone Alessandro, Scassellati Brian

机构信息

Social Robotics Lab, Computer Science Department, Yale University, New Haven, CT, United States.

Human Interaction and Robotics Group, Computer Science Department, University of Colorado Boulder, Boulder, CO, United States.

出版信息

Front Robot AI. 2022 Feb 14;8:725780. doi: 10.3389/frobt.2021.725780. eCollection 2021.

Abstract

The field of Human-Robot Collaboration (HRC) has seen a considerable amount of progress in recent years. Thanks in part to advances in control and perception algorithms, robots have started to work in increasingly unstructured environments, where they operate side by side with humans to achieve shared tasks. However, little progress has been made toward the development of systems that are truly effective in supporting the human, proactive in their collaboration, and that can autonomously take care of part of the task. In this work, we present a collaborative system capable of assisting a human worker despite limited manipulation capabilities, incomplete model of the task, and partial observability of the environment. Our framework leverages information from a high-level, hierarchical model that is shared between the human and robot and that enables transparent synchronization between the peers and mutual understanding of each other's plan. More precisely, we firstly derive a partially observable Markov model from the high-level task representation; we then use an online Monte-Carlo solver to compute a short-horizon robot-executable plan. The resulting policy is capable of interactive replanning on-the-fly, dynamic error recovery, and identification of hidden user preferences. We demonstrate that the system is capable of robustly providing support to the human in a realistic furniture construction task.

摘要

近年来,人机协作(HRC)领域取得了显著进展。部分得益于控制和感知算法的进步,机器人已开始在越来越多的非结构化环境中工作,在这些环境中它们与人类并肩操作以完成共享任务。然而,在开发真正有效支持人类、在协作中积极主动且能自主承担部分任务的系统方面进展甚微。在这项工作中,我们提出了一种协作系统,尽管其操作能力有限、任务模型不完整且环境部分可观测,但仍能够协助人类工作者。我们的框架利用来自高层级分层模型的信息,该模型在人类和机器人之间共享,实现对等方之间的透明同步以及对彼此计划的相互理解。更确切地说,我们首先从高层任务表示中推导部分可观测马尔可夫模型;然后使用在线蒙特卡罗求解器来计算短期机器人可执行计划。所得策略能够实时进行交互式重新规划、动态错误恢复以及识别隐藏的用户偏好。我们证明该系统能够在实际的家具建造任务中为人类提供强大的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b0e/8882984/e5ec64644aa1/frobt-08-725780-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验