Zhou Jun, You Jing-Yang, Zhao Yi-Ming, Feng Yuan Ping, Shen Lei
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
Department of Physics, National University of Singapore, Singapore 117551, Singapore.
Acc Chem Res. 2024 Sep 3;57(17):2572-2581. doi: 10.1021/acs.accounts.4c00394. Epub 2024 Aug 19.
ConspectusElectrides make up a fascinating group of materials with unique physical and chemical properties. In these materials, excess electrons do not behave like normal electrons in metals or form any chemical bonds with atoms. Instead, they "float" freely in the gaps within the material's structure, acting like negatively charged particles called anions (see the graph). Recently, there has been a surge of interest in van der Waals (vdW) electrides or electrenes in two dimensions. A typical example is layered lanthanum bromide (LaBr), which can be taken as [La(Br)]•(e). Each excess free electron is trapped within a hexagonal pore, forming dense dots of electron density. These anionic electrons are loosely bound, giving vdW electrides some unique properties such as ferromagnetism, superconductivity, topological features, and Dirac plasmons. The high density of the free electron makes electrides very promising for applications in thermionic emission, organic light-emitting diodes, and high-performance catalysts.In this Account, we first discuss the discovery of numerous vdW electrides through high-throughput computational screening of over 67,000 known inorganic crystals in Materials Project. A dozen of them have been newly discovered and have not been reported before. Importantly, they possess completely different structural prototypes and properties of anionic electrons compared to widely studied electrides such as CaN. Finding these new vdW electrides expands the variety of electrides that can be made in the experiment and opens up new possibilities for studying their unique properties and applications.Then, based on the screened vdW electrides, we delve into their various emerging properties. For example, we developed a new magnetic mechanism specific to atomic-orbital-free ferromagnetism in electrides. We uncover the dual localized and extended nature of the anionic electrons in such electrides and demonstrate the formation of the local moment by the localized feature and the ferromagnetic interaction by the direct overlapping of their extended states. We further show the effective tuning of the magnetic properties of vdW electrides by engineering their structural, electronic, and compositional properties. Besides, we show that the complex interaction between the multiple quantum orderings in vdW electrides leads to many interesting properties including valley polarization, charge density waves, a topological property, a superconducting property, and a thermoelectrical property.Moreover, we discuss strategies to leverage the unique intrinsic properties of vdW electrides for practical applications. We show that these properties make vdW electrides potential candidates for advanced applications such as spin-orbit torque memory devices, valleytronic devices, K-ion batteries, and thermoelectricity. Finally, we discuss the current challenges and future perspectives for research using these emerging materials.
综述
电子化合物构成了一类迷人的材料,具有独特的物理和化学性质。在这些材料中,多余的电子不像金属中的正常电子那样表现,也不与原子形成任何化学键。相反,它们在材料结构的间隙中自由“漂浮”,表现得像带负电荷的粒子,即阴离子(见图)。最近,二维范德华(vdW)电子化合物或电子烯引起了人们极大的兴趣。一个典型的例子是层状溴化镧(LaBr),它可以表示为[La(Br)]•(e)。每个多余的自由电子被困在一个六边形孔隙中,形成电子密度的密集点。这些阴离子电子束缚松散,赋予vdW电子化合物一些独特的性质,如铁磁性、超导性、拓扑特性和狄拉克等离子体。自由电子的高密度使得电子化合物在热电子发射、有机发光二极管和高性能催化剂等应用中极具前景。
在本综述中,我们首先讨论了通过对材料项目中超过67000种已知无机晶体进行高通量计算筛选发现的众多vdW电子化合物。其中有十几种是新发现的,此前未曾报道过。重要的是,与广泛研究的电子化合物如CaN相比,它们具有完全不同的结构原型和阴离子电子性质。发现这些新的vdW电子化合物扩展了实验中可制备的电子化合物种类,并为研究它们的独特性质和应用开辟了新的可能性。
然后,基于筛选出的vdW电子化合物,我们深入研究了它们的各种新出现的性质。例如,我们开发了一种特定于电子化合物中无原子轨道铁磁性的新磁机制。我们揭示了此类电子化合物中阴离子电子的双重局域化和扩展性质,并通过局域化特征证明了局域磁矩的形成,以及通过其扩展态的直接重叠证明了铁磁相互作用。我们进一步表明,通过设计vdW电子化合物的结构、电子和组成性质,可以有效地调节其磁性质。此外,我们表明vdW电子化合物中多个量子序之间的复杂相互作用导致了许多有趣的性质,包括谷极化、电荷密度波、拓扑性质、超导性质和热电性质。
此外,我们讨论了利用vdW电子化合物独特的固有性质实现实际应用的策略。我们表明,这些性质使vdW电子化合物成为自旋轨道扭矩存储器件、谷电子学器件、钾离子电池和热电学等先进应用的潜在候选材料。最后,我们讨论了使用这些新兴材料进行研究的当前挑战和未来前景。