Das Satyapriy, Negi Sangeeta
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, U.P., 211004, India.
AMB Express. 2022 Mar 3;12(1):28. doi: 10.1186/s13568-022-01366-1.
Alkane hydroxylase (AlkB), a membrane-bound enzyme has high industrial demand; however, its economical production remains challenging due to its intrinsic nature and co-factor dependency. In the current study, various critical process parameters for optimum production of AlkB have been optimized through feed forward neural network (FFNN) and genetic algorithm (GA) models using Penicillium chrysogenum SNP5 (MTCC13144). AlkB specific activity under preliminary un-optimized conditions i.e., 1% hexadecane, 7.4 pH, 11 days incubation time, 28 °C incubation temperature and 1 ml of inoculum size was 100 U/mg. 'One variable at a time' (OVAT) strategy was used to identify optimum physicochemical parameters and then its output data was fed to develop a model of FFNN with '6-12-1' topology. Outputs of FFNN were further optimized through GA to minimize errors and intensify search level. This has provided superior predictive performances with 0.053 U/mg overall mean absolute percentage error (MAPE), 6.801 U/mg root mean square errors (RMSE), and 0.987 overall correlation coefficient (R). The AlkB specific activity improved by 3.5-fold, i.e., from 100 U/mg under preliminary un-optimized conditions to 351.32 U/mg under optimum physicochemical conditions obtained through FFNN-GA hybrid method, i.e., hexadecane (carbon source): 1.56% v/v, FeSO: 0.63 mM, incubation temperature: 27.40 °C, pH: 7.38, incubation time: 12.35 days and inoculums size: 1.33 ml. The developed process would be a stepping stone to fulfill the high industrial demands of Alkane hydroxylase.
烷烃羟化酶(AlkB)是一种膜结合酶,具有很高的工业需求;然而,由于其内在性质和对辅因子的依赖性,其经济生产仍然具有挑战性。在当前的研究中,使用产黄青霉SNP5(MTCC13144),通过前馈神经网络(FFNN)和遗传算法(GA)模型,对AlkB最佳生产的各种关键工艺参数进行了优化。在初步未优化的条件下,即1%十六烷、pH 7.4、培养时间11天、培养温度28℃和接种量1ml时,AlkB的比活性为100 U/mg。采用“一次一个变量”(OVAT)策略来确定最佳理化参数,然后将其输出数据用于开发具有“6-12-1”拓扑结构的FFNN模型。通过GA进一步优化FFNN的输出,以最小化误差并提高搜索水平。这提供了卓越的预测性能,总体平均绝对百分比误差(MAPE)为0.053 U/mg,均方根误差(RMSE)为6.801 U/mg,总体相关系数(R)为0.987。AlkB的比活性提高了3.5倍,即从初步未优化条件下的100 U/mg提高到通过FFNN-GA混合方法获得的最佳理化条件下的351.32 U/mg,即十六烷(碳源):1.56% v/v,硫酸亚铁:0.63 mM,培养温度:27.40℃,pH:7.38,培养时间:12.35天,接种量:1.33 ml。所开发的工艺将是满足烷烃羟化酶高工业需求的一块垫脚石。