Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
J Phys Chem Lett. 2022 Mar 17;13(10):2273-2280. doi: 10.1021/acs.jpclett.1c03941. Epub 2022 Mar 3.
Bioinspired membrane molecules with improved physical properties and enhanced stability can serve as functional models for conventional lipid or amphiphilic species. Importantly, these molecules can also provide new insights into emergent phenomena that manifest during self-assembly at interfaces. Here, we elucidate the structural response and mechanistic steps underlying the self-assembly of the amphiphilic, charged oligodimethylsiloxane imidazolium cation (ODMS-MIM) at the air-aqueous interface using Langmuir trough methods with coincident surface-specific vibrational sum-frequency generation (SFG) spectroscopy. We find evidence for a new compression-induced desolvation step that precedes commonly known disordered-to-ordered phase transitions to form nanoscopic assemblies. The experimental data was supported by atomistic molecular dynamics (MD) simulations to provide a detailed mechanistic picture underlying the assembly and the role of water in these phase transitions. The sensitivity of the hydrophobic ODMS tail conformations to compression─owing to distinct water-ODMS interactions and tail-tail solvation properties─offers new strategies for the design of interfaces that can be further used to develop soft-matter electronics and low-dimensional materials using physical and chemical controls.
具有改进的物理性质和增强的稳定性的仿生膜分子可用作传统脂质或两亲性物质的功能模型。重要的是,这些分子还可以为界面自组装过程中出现的新兴现象提供新的见解。在这里,我们使用 Langmuir 槽方法和同时进行的表面特定振动和频产生(SFG)光谱阐明了两亲性带电荷的二甲基硅氧烷咪唑阳离子(ODMS-MIM)在气-水界面处自组装的结构响应和机制步骤。我们发现有证据表明,在通常已知的无序到有序相转变形成纳米级组装体之前,存在一个新的压缩诱导去溶剂化步骤。实验数据得到原子分子动力学(MD)模拟的支持,为组装的详细机制以及水在这些相转变中的作用提供了详细的机制图。由于疏水 ODMS 尾的构象对压缩的敏感性,这归因于独特的水-ODMS 相互作用和尾-尾溶剂化特性,为设计可以进一步用于使用物理和化学控制开发软物质电子学和低维材料的界面提供了新的策略。