Suppr超能文献

通过表面特定振动光谱学和模拟技术研究跨越水界面的介电函数分布。

The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations.

机构信息

Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.

Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka 60-8531, Japan.

出版信息

Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2204156119. doi: 10.1073/pnas.2204156119. Epub 2022 Aug 29.

Abstract

The dielectric properties of interfacial water on subnanometer length scales govern chemical reactions, carrier transfer, and ion transport at interfaces. Yet, the nature of the interfacial dielectric function has remained under debate as it is challenging to access the interfacial dielectric with subnanometer resolution. Here we use the vibrational response of interfacial water molecules probed using surface-specific sum-frequency generation (SFG) spectra to obtain exquisite depth resolution. Different responses originate from water molecules at different depths and report back on the local interfacial dielectric environment via their spectral amplitudes. From experimental and simulated SFG spectra at the air/water interface, we find that the interfacial dielectric constant changes drastically across an ∼1 Å thin interfacial water region. The strong gradient of the interfacial dielectric constant leads, at charged planar interfaces, to the formation of an electric triple layer that goes beyond the standard double-layer model.

摘要

在亚纳米长度尺度上,界面水的介电性质控制着界面处的化学反应、载流子转移和离子输运。然而,由于难以以亚纳米分辨率获得界面介电函数,因此界面介电函数的性质一直存在争议。在这里,我们使用表面特定的和频产生(SFG)光谱探测界面水分子的振动响应来获得极好的深度分辨率。不同的响应源于处于不同深度的水分子,并通过其光谱幅度报告局部界面介电环境。从空气/水界面的实验和模拟 SFG 光谱中,我们发现界面介电常数在约 1 Å 厚的界面水区域内发生剧烈变化。在带电平面界面上,界面介电常数的强梯度导致形成了超越标准双层模型的电三层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e34/9457560/effecc28023d/pnas.2204156119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验