Institute of Quantum Electronics, ETH Zürich, Zürich 8093, Switzerland.
Laboratory for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland.
Science. 2022 Mar 4;375(6584):1030-1034. doi: 10.1126/science.abl5818. Epub 2022 Mar 3.
The prospect of controlling the electronic properties of materials via the vacuum fields of cavity electromagnetic resonators is emerging as one of the frontiers of condensed matter physics. We found that the enhancement of vacuum field fluctuations in subwavelength split-ring resonators strongly affects one of the most paradigmatic quantum protectorates, the quantum Hall electron transport in high-mobility two-dimensional electron gases. The observed breakdown of the topological protection of the integer quantum Hall effect is interpreted in terms of a long-range cavity-mediated electron hopping where the anti-resonant terms of the light-matter coupling Hamiltonian develop into a finite resistivity induced by the vacuum fluctuations. Our experimental platform can be used for any two-dimensional material and provides a route to manipulate electron phases in matter by means of vacuum-field engineering.
通过腔电磁共振器的真空场来控制材料的电子性质的前景,正成为凝聚态物理的前沿领域之一。我们发现,亚波长分裂环谐振器中真空场涨落的增强强烈影响了最典型的量子保护区之一,即在高迁移率二维电子气体中的量子霍尔电子输运。整数量子霍尔效应的拓扑保护的观察到的破坏,可以用腔介导的电子跃迁来解释,其中光物质耦合哈密顿量的反共振项演变成由真空涨落引起的有限电阻。我们的实验平台可用于任何二维材料,并提供了一种通过真空场工程来控制物质中电子相的方法。