Spencer Michael S, Urban Joanna M, Frenzel Maximilian, Mueller Niclas S, Minakova Olga, Wolf Martin, Paarmann Alexander, Maehrlein Sebastian F
Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
Institute of Radiation Physics, Helmholtz Zentrum Dresden Rossendorf, 01328, Dresden, Germany.
Light Sci Appl. 2025 Feb 6;14(1):69. doi: 10.1038/s41377-024-01685-x.
Cavity electrodynamics offers a unique avenue for tailoring ground-state material properties, excited-state engineering, and versatile control of quantum matter. Merging these concepts with high-field physics in the terahertz (THz) spectral range opens the door to explore low-energy, field-driven cavity electrodynamics, emerging from fundamental resonances or order parameters. Despite this demand, leveraging the full potential of field-driven material control in cavities is hindered by the lack of direct access to the intra-cavity fields. Here, we demonstrate a new concept of active cavities, consisting of electro-optic Fabry-Pérot resonators, which measure their intra-cavity electric fields on sub-cycle timescales. We thereby demonstrate quantitative retrieval of the cavity modes in amplitude and phase, over a broad THz frequency range. To enable simultaneous intra-cavity sampling alongside excited-state material control, we design a tunable multi-layer cavity, enabling deterministic design of hybrid cavities for polaritonic systems. Our theoretical models reveal the origin of the avoided crossings embedded in the intricate mode dispersion, and will enable fully-switchable polaritonic effects within arbitrary materials hosted by the hybrid cavity. Electro-optic cavities (EOCs) will therefore serve as integrated probes of light-matter interactions across all coupling regimes, laying the foundation for field-resolved intra-cavity quantum electrodynamics.
腔电动力学为定制基态材料特性、激发态工程以及对量子物质进行多功能控制提供了一条独特途径。将这些概念与太赫兹(THz)光谱范围内的高场物理相结合,为探索源于基本共振或序参量的低能量、场驱动腔电动力学打开了大门。尽管有此需求,但由于缺乏直接获取腔内场的手段,阻碍了在腔中充分发挥场驱动材料控制的潜力。在此,我们展示了一种由电光法布里 - 珀罗谐振器组成的有源腔新概念,它能在亚周期时间尺度上测量其腔内电场。我们由此展示了在很宽的太赫兹频率范围内对腔模幅度和相位的定量恢复。为了在进行激发态材料控制的同时实现腔内同步采样,我们设计了一种可调谐多层腔,能够为极化激元系统确定性地设计混合腔。我们的理论模型揭示了复杂模式色散中避免交叉的起源,并将使混合腔内任意材料中的极化激元效应能够完全切换。因此,电光腔(EOC)将作为所有耦合 regime 中光与物质相互作用的集成探测器,为场分辨腔内量子电动力学奠定基础。