Suppr超能文献

蒽醌-2,6-二磺酸钠(AQDS)对氨氮胁迫下厌氧消化的影响:触发介导的种间电子传递(MIET)。

Effect of anthraquinone-2,6-disulfonate (AQDS) on anaerobic digestion under ammonia stress: Triggering mediated interspecies electron transfer (MIET).

机构信息

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.

Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.

出版信息

Sci Total Environ. 2022 Jul 1;828:154158. doi: 10.1016/j.scitotenv.2022.154158. Epub 2022 Feb 28.

Abstract

The underlying mechanisms by which humic-like substrates affect anaerobic digestion under ammonia stress are insufficiently understood so far. In this study, anthraquinone-2,6-disulfonate (AQDS), a representative analogue of humic acid, was adopted at a 100 μM concentration as the exogenous additive during anaerobic digestion process along with 5.0 g NH-N/L stress. The results showed that AQDS could improve the cumulative CH production and the maximum CH production rate by 7.3 and 10.8%, respectively, and shorten the methanogenic lag phase by 13.8%. Acetate-related production and methanation were both facilitated, during which the biological rather than the chemical mechanism played a crucial role. The microbial diversity distribution revealed that electroactive Anaerolinea and Methanosaeta were significantly enriched in response to AQDS amendment. Herein, AQDS was presumed to serve as an electron shuttle to trigger a mediated interspecies electron transfer (MIET) network among electroactive consortia, thus accelerating acetate methanation and ameliorating methanogenesis under ammonia stress.

摘要

目前,人们对于类腐殖质物质在氨氮胁迫下影响厌氧消化的潜在机制还知之甚少。在这项研究中,蒽醌-2,6-二磺酸钠(AQDS)作为腐殖酸的典型类似物,在浓度为 100 μM 时,被用作外加添加剂,应用于 5.0 g NH-N/L 应激条件下的厌氧消化过程。结果表明,AQDS 可以分别提高累积 CH4 产量和最大 CH4 产率 7.3%和 10.8%,并将产甲烷迟滞期缩短 13.8%。乙酸相关的生成和甲烷化都得到了促进,其中生物机制而非化学机制起着至关重要的作用。微生物多样性分布表明,电活性的 Anaerolinea 和 Methanosaeta 由于 AQDS 的添加而显著富集。在此,AQDS 被假定为一种电子穿梭体,在电活性菌群之间引发一种介导的种间电子转移(MIET)网络,从而加速乙酸的甲烷化作用,并改善氨氮胁迫下的产甲烷作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验