Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
Microb Ecol. 2013 Nov;66(4):950-60. doi: 10.1007/s00248-013-0271-7. Epub 2013 Aug 4.
This study investigated the change of CH4 production and methanogenic community in response to the presence of humic substances (humics) analogue, anthraquinone-2,6-disulfonate (AQDS). Anaerobic experiments used a Chinese paddy soil, and three concentration levels of 0.5, 5, and 20 mM AQDS were conducted. Results suggested that the effect of AQDS on methanogenesis was time-dependent and concentration-dependent. Twenty millimolars of AQDS was toxic for methanogenic activity almost for the entire experimental period. Slight inhibition of methanogenesis by AQDS respiration in the 0.5- and 5-mM AQDS-supplemented treatments occurred within the early period, while CH4 accumulated throughout the later period was approximately five and ten times greater than that of the controls without AQDS, respectively. AQDS reduction coupling to acetate oxidization enriched Geobacter species, and the mcrA-targeted T-RFLP profiles revealed significant increase of Methanosarcina at the expense of Methanobacterium in the 0.5- and 5-mM AQDS treatments. The enriched syntrophic association between Geobacter and Methanosarcina was deduced to be an effective methanogenic pathway for converting acetate to CH4 via direct interspecies electron transfer. This study implied the ecological importance of syntrophic interaction between methanogens and microorganisms enriched by anaerobic respiration of non-methanogenic terminal electron acceptors in paddy soils.
本研究探讨了腐殖质类似物蒽醌-2,6-二磺酸钠(AQDS)存在时 CH4 产生和产甲烷菌群的变化。采用中国稻田土进行厌氧实验,设置 0.5、5 和 20 mM 三个 AQDS 浓度水平。结果表明,AQDS 对产甲烷作用的影响具有时间和浓度依赖性。20 mM 的 AQDS 对产甲烷活性几乎在整个实验期间都有毒性。在添加 0.5 和 5 mM AQDS 的处理中,AQDS 呼吸对产甲烷作用的轻微抑制发生在早期,而在没有 AQDS 的对照中,后期积累的 CH4 分别约为对照的五倍和十倍。AQDS 还原偶联乙酸氧化富集了 Geobacter 种,mcrA 靶向 T-RFLP 图谱显示,在 0.5 和 5 mM AQDS 处理中,Methanosarcina 的丰度显著增加,而 Methanobacterium 的丰度降低。推断富集的 Geobacter 和 Methanosarcina 之间的共营养关系是一种有效的产甲烷途径,可通过直接种间电子传递将乙酸转化为 CH4。本研究暗示了在稻田土壤中,非甲烷末端电子受体的厌氧呼吸富集的产甲烷菌和微生物之间的共营养相互作用的生态重要性。