School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia.
Sci Total Environ. 2022 Jun 20;826:154162. doi: 10.1016/j.scitotenv.2022.154162. Epub 2022 Feb 28.
Haber-Bosch (HB) process, the main method for ammonia (NH) production, contributes to near 2% of the global carbon emissions because the hydrogen input is obtained from fossil sources. NH production is concentrated in a few countries, adding emissions due to global distribution. Distributed plants next to farmers and fed by renewable energy can reduce these impacts, as well as NH storage, shortage risks, and price volatility. Distributed plants cannot reach low NH production costs as centralised plants, but they can be promoted by the environmental benefits of its products lifecycles. Therefore, life cycle assessments of NH production pathways and specific modelling for NH transport in Australia were performed, from cradle-to-site, to identify the influence of storage, transport, and energy sources in their environmental profiles. The carbon footprint of centralised production was up to 2.96 kg.CO/kg.NH, from which 29.3% corresponded to transport. Local production demonstrated substantial avoided transport impacts and that CO can reach reductions over 100% when including co-product credits such as oxygen and carbon black. Local plants using electrolysers to supply mini-HB loops obtained rates of 0.12, -0.52, and -1.57 kg.CO/kg.NH using electricity from solar, wind, and biogas (other than manure) sources, respectively. The alternative using high temperature plasma reactor instead of electrolyser obtained its best rate of -0.65 kg.CO/kg using biogas different from manure. At farm electrolyser-based plants using novel non-thermal plasma reactors, considering potential energy yields and simplified NH separation technology, could reach a rate of -1.07 kg.CO/kg.NH using solar energy. Among the assessed pathways, the most notable impact was on freshwater eutrophication in the electrolyser-based plants generating reductions up to 290%, due to oxygen credits. Despite these results, the use of solar energy raises concerns on land use and terrestrial ecotoxicity due to the area needed for solar farms and the manufacture of their components.
哈伯-博世(HB)工艺是生产氨(NH)的主要方法,由于氢气输入来自化石资源,因此该工艺导致了近 2%的全球碳排放。NH 的生产集中在少数几个国家,加上其在全球范围内的分布,进一步增加了排放量。在农民附近建立分布式工厂,并使用可再生能源为其提供氢气,可以减少这些影响,同时还可以储存 NH、降低短缺风险和稳定价格波动。分布式工厂无法像集中式工厂那样达到 NH 生产的低成本,但它们可以通过其产品生命周期的环境效益来推广。因此,对 NH 生产途径的生命周期评估和澳大利亚 NH 运输的具体建模进行了研究,从摇篮到现场,以确定储存、运输和能源在其环境概况中的影响。集中式生产的碳足迹高达 2.96kg.CO/kg.NH,其中 29.3%与运输有关。本地化生产显示出了大量的避免运输影响的潜力,并且当包括氧气和碳黑等副产物信用额度时,CO 的减排率可以超过 100%。使用电解槽为微型 HB 循环提供氢气的本地工厂分别使用太阳能、风能和沼气(非粪肥)作为能源时,获得了 0.12、-0.52 和-1.57kg.CO/kg.NH 的速率。而使用高温等离子体反应器代替电解槽的替代方案,使用与粪肥不同的沼气时,获得了最佳的-0.65kg.CO/kg.NH 的速率。在使用新型非热等离子体反应器的农场电解槽工厂中,考虑到潜在的能源产量和简化的 NH 分离技术,使用太阳能可以达到-1.07kg.CO/kg.NH 的速率。在所评估的途径中,最显著的影响是在使用电解槽的工厂中对淡水富营养化的影响,由于氧气信用额度,其减少了高达 290%。尽管有这些结果,但由于太阳能农场所需的面积以及其组件的制造,太阳能的使用引起了人们对土地利用和陆地生态毒性的关注。