Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Math Biosci Eng. 2022 Jan 4;19(3):2310-2329. doi: 10.3934/mbe.2022107.
Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared genetic pathological mechanisms are still far from being fully understood. Therefore, this study is aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by analyzing the genome wide gene expression data with different computational biology approaches. In this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network (HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence genes, functionally connected with diabetes and obesity traits. Interestingly, , and genes were found to be tractable by small chemicals, antibodies, and/or enzyme molecules. In conclusion, our study highlights the potential of computational biology methods in correlating expression data to topological parameters, functional relationships, and druggability characteristics of the candidate genes involved in complex metabolic disorders with a common etiological basis.
肥胖症和 2 型糖尿病(T2D)是双重流行疾病,其共同的遗传病理机制仍远未被完全理解。因此,本研究旨在通过分析不同的计算生物学方法的全基因组基因表达数据,发现肥胖症和 T2D 的关键基因、分子机制和新药靶标。在这项研究中,通过包含基因表达、蛋白质相互作用网络(PIN)、组织特异性和可药性方法的综合框架,分析了来自瘦人、肥胖者和 T2D 个体的分离的原代人脂肪细胞的 RNA 测序数据。我们的研究结果显示,在糖尿病与肥胖组比较中,共有 1932 个独特的差异表达基因(DEGs)(p≤0.05)。对这 1932 个 DEGs 的 PIN 分析确定了 190 个高中心网络(HCN)基因,这些基因被注释到 3367 个 GO 术语和功能途径,如胰岛素信号反应、磷酸化、脂质代谢、葡萄糖代谢等(p≤0.05)。通过对 190 个 HCN 基因应用额外的 PIN 和拓扑参数,我们进一步映射了 25 个高置信度基因,这些基因与糖尿病和肥胖特征在功能上有联系。有趣的是,发现 、 和 基因可以通过小分子、抗体和/或酶分子来处理。总之,我们的研究强调了计算生物学方法在将表达数据与候选基因的拓扑参数、功能关系和可药性特征相关联方面的潜力,这些候选基因涉及具有共同病因基础的复杂代谢疾病。