Suppr超能文献

基于网络的生物信息学方法鉴定与神经退行性疾病进展相关的 2 型糖尿病分子标志物。

A Network-Based Bioinformatics Approach to Identify Molecular Biomarkers for Type 2 Diabetes that Are Linked to the Progression of Neurological Diseases.

机构信息

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

University of Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Int J Environ Res Public Health. 2020 Feb 6;17(3):1035. doi: 10.3390/ijerph17031035.

Abstract

Neurological diseases (NDs) are progressive disorders, the progression of which can be significantly affected by a range of common diseases that present as comorbidities. Clinical studies, including epidemiological and neuropathological analyses, indicate that patients with type 2 diabetes (T2D) have worse progression of NDs, suggesting pathogenic links between NDs and T2D. However, finding causal or predisposing factors that link T2D and NDs remains challenging. To address these problems, we developed a high-throughput network-based quantitative pipeline using agnostic approaches to identify genes expressed abnormally in both T2D and NDs, to identify some of the shared molecular pathways that may underpin T2D and ND interaction. We employed gene expression transcriptomic datasets from control and disease-affected individuals and identified differentially expressed genes (DEGs) in tissues of patients with T2D and ND when compared to unaffected control individuals. One hundred and ninety seven DEGs (99 up-regulated and 98 down-regulated in affected individuals) that were common to both the T2D and the ND datasets were identified. Functional annotation of these identified DEGs revealed the involvement of significant cell signaling associated molecular pathways. The overlapping DEGs (i.e., seen in both T2D and ND datasets) were then used to extract the most significant GO terms. We performed validation of these results with gold benchmark databases and literature searching, which identified which genes and pathways had been previously linked to NDs or T2D and which are novel. Hub proteins in the pathways were identified (including DNM2, DNM1, MYH14, PACSIN2, TFRC, PDE4D, ENTPD1, PLK4, CDC20B, and CDC14A) using protein-protein interaction analysis which have not previously been described as playing a role in these diseases. To reveal the transcriptional and post-transcriptional regulators of the DEGs we used transcription factor (TF) interactions analysis and DEG-microRNAs (miRNAs) interaction analysis, respectively. We thus identified the following TFs as important in driving expression of our T2D/ND common genes: FOXC1, GATA2, FOXL1, YY1, E2F1, NFIC, NFYA, USF2, HINFP, MEF2A, SRF, NFKB1, USF2, HINFP, MEF2A, SRF, NFKB1, PDE4D, CREB1, SP1, HOXA5, SREBF1, TFAP2A, STAT3, POU2F2, TP53, PPARG, and JUN. MicroRNAs that affect expression of these genes include mir-335-5p, mir-16-5p, mir-93-5p, mir-17-5p, mir-124-3p. Thus, our transcriptomic data analysis identifies novel potential links between NDs and T2D pathologies that may underlie comorbidity interactions, links that may include potential targets for therapeutic intervention. In sum, our neighborhood-based benchmarking and multilayer network topology methods identified novel putative biomarkers that indicate how type 2 diabetes (T2D) and these neurological diseases interact and pathways that, in the future, may be targeted for treatment.

摘要

神经疾病(NDs)是进行性疾病,其进展可以受到一系列常见疾病的显著影响,这些疾病表现为合并症。临床研究,包括流行病学和神经病理学分析,表明 2 型糖尿病(T2D)患者的 NDs 进展更差,这表明 NDs 和 T2D 之间存在发病机制联系。然而,找到将 T2D 和 NDs 联系起来的因果或易患因素仍然具有挑战性。为了解决这些问题,我们开发了一种基于高通量网络的定量管道,使用不可知论的方法来识别在 T2D 和 NDs 中异常表达的基因,以确定一些可能支持 T2D 和 ND 相互作用的共同分子途径。我们使用来自对照和受疾病影响个体的基因表达转录组数据集,确定了与未受影响的对照个体相比,T2D 和 ND 患者组织中差异表达的基因(DEGs)。在 T2D 和 ND 数据集之间共同的 197 个 DEGs(99 个上调和 98 个下调)被识别。这些鉴定的 DEGs 的功能注释显示了与重要细胞信号相关的分子途径的参与。然后,使用重叠的 DEGs(即,在 T2D 和 ND 数据集中都可见)来提取最显著的 GO 术语。我们使用黄金基准数据库和文献搜索对这些结果进行了验证,这确定了哪些基因和途径以前与 NDs 或 T2D 相关,哪些是新的。使用蛋白质-蛋白质相互作用分析鉴定了途径中的枢纽蛋白(包括 DNM2、DNM1、MYH14、PACSIN2、TFRC、PDE4D、ENTPD1、PLK4、CDC20B 和 CDC14A),这些蛋白以前并未被描述为在这些疾病中发挥作用。为了揭示 DEGs 的转录和转录后调节因子,我们分别使用转录因子(TF)相互作用分析和 DEG-microRNAs(miRNAs)相互作用分析。因此,我们确定了以下 TFs 作为驱动我们的 T2D/ND 常见基因表达的重要因素:FOXC1、GATA2、FOXL1、YY1、E2F1、NFIC、NFYA、USF2、HINFP、MEF2A、SRF、NFKB1、PDE4D、CREB1、SP1、HOXA5、SREBF1、TFAP2A、STAT3、POU2F2、TP53、PPARG 和 JUN。影响这些基因表达的 microRNAs 包括 mir-335-5p、mir-16-5p、mir-93-5p、mir-17-5p、mir-124-3p。因此,我们的转录组数据分析确定了 NDs 和 T2D 病理学之间新的潜在联系,这些联系可能是合并症相互作用的基础,这些联系可能包括潜在的治疗干预靶点。总之,我们的基于邻域的基准测试和多层网络拓扑方法确定了新的潜在生物标志物,这些标志物表明 2 型糖尿病(T2D)和这些神经疾病如何相互作用,以及未来可能成为治疗目标的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e3b/7037290/c6c4f6023855/ijerph-17-01035-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验