School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540.
Center for Neural Science, New York University, New York, New York 10003.
J Neurosci. 2022 Apr 20;42(16):3365-3380. doi: 10.1523/JNEUROSCI.2145-21.2022. Epub 2022 Mar 3.
This paper is about neural mechanisms of direction selectivity (DS) in macaque primary visual cortex, V1. We present data (on male macaque) showing strong DS in a majority of simple cells in V1 layer 4Cα, the cortical layer that receives direct afferent input from the magnocellular division of the lateral geniculate nucleus (LGN). Magnocellular LGN cells are not direction-selective. To understand the mechanisms of DS, we built a large-scale, recurrent model of spiking neurons called DSV1. Like its predecessors, DSV1 reproduces many visual response properties of V1 cells including orientation selectivity. Two important new features of DSV1 are (1) DS is initiated by small, consistent dynamic differences in the visual responses of OFF and ON Magnocellular LGN cells, and (2) DS in the responses of most model simple cells is increased over those of their feedforward inputs; this increase is achieved through dynamic interaction of feedforward and intracortical synaptic currents without the use of intracortical direction-specific connections. The DSV1 model emulates experimental data in the following ways: (1) most 4Cα Simple cells were highly direction-selective but 4Cα Complex cells were not; (2) the preferred directions of the model's direction-selective Simple cells were invariant with spatial and temporal frequency (TF); (3) the distribution of the preferred/opposite ratio across the model's population of cells was very close to that found in experiments. The strong quantitative agreement between DS in data and in model simulations suggests that the neural mechanisms of DS in DSV1 may be similar to those in the real visual cortex. Motion perception is a vital part of our visual experience of the world. In monkeys, whose vision resembles that of humans, the neural computation of the direction of a moving target starts in the primary visual cortex, V1, in layer 4Cα that receives input from the eye through the lateral geniculate nucleus (LGN). How direction selectivity (DS) is generated in layer 4Cα is an outstanding unsolved problem in theoretical neuroscience. In this paper, we offer a solution based on plausible biological mechanisms. We present a new large-scale circuit model in which DS originates from slightly different LGN ON/OFF response time-courses and is enhanced in cortex without the need for direction-specific intracortical connections. The model's DS is in quantitative agreement with experiments.
本文研究了猕猴初级视皮层 V1 中方向选择性 (DS) 的神经机制。我们呈现的数据(来自雄性猕猴)表明,在 V1 层 4Cα 中,大多数简单细胞表现出强烈的 DS,4Cα 层接收来自外侧膝状体核 (LGN) 大细胞分裂的直接传入输入。大细胞 LGN 细胞没有方向选择性。为了理解 DS 的机制,我们构建了一个称为 DSV1 的大型、递归尖峰神经元模型。与之前的模型类似,DSV1 再现了 V1 细胞的许多视觉反应特性,包括方向选择性。DSV1 的两个重要新特征是:(1)DS 由 OFF 和 ON 大细胞 LGN 细胞的视觉反应中微小而一致的动态差异引发,(2) 大多数模型简单细胞的反应中的 DS 高于其前馈输入;这种增加是通过前馈和皮层内突触电流的动态相互作用实现的,而无需使用皮层内方向特异性连接。DSV1 模型以以下方式模拟实验数据:(1) 大多数 4Cα 简单细胞具有高度的方向选择性,但 4Cα 复杂细胞没有;(2) 模型的方向选择性简单细胞的首选方向与空间和时间频率 (TF) 不变;(3) 模型细胞群体的首选/相反比分布与实验非常接近。DS 在数据和模型模拟中的强烈定量一致性表明,DSV1 中 DS 的神经机制可能与真实视觉皮层中的机制相似。运动感知是我们对世界视觉体验的重要组成部分。在猴子中,其视觉类似于人类,运动目标的方向计算始于初级视皮层 V1 的 4Cα 层,该层通过外侧膝状体核 (LGN) 接收来自眼睛的输入。4Cα 层中的方向选择性 (DS) 是如何产生的,这是理论神经科学中一个悬而未决的问题。在本文中,我们基于合理的生物学机制提供了一个解决方案。我们提出了一个新的大规模电路模型,其中 DS 源自略微不同的 LGN ON/OFF 反应时程,并在皮层中增强,而无需方向特异性皮层内连接。模型的 DS 与实验定量一致。