Suppr超能文献

猫初级视皮层的综合数据驱动模型。

A comprehensive data-driven model of cat primary visual cortex.

机构信息

Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague 1, Czechia.

Unit of Neuroscience, Information and Complexity (UNIC), CNRS FRE 3693, Gif-sur-Yvette, France.

出版信息

PLoS Comput Biol. 2024 Aug 21;20(8):e1012342. doi: 10.1371/journal.pcbi.1012342. eCollection 2024 Aug.

Abstract

Knowledge integration based on the relationship between structure and function of the neural substrate is one of the main targets of neuroinformatics and data-driven computational modeling. However, the multiplicity of data sources, the diversity of benchmarks, the mixing of observables of different natures, and the necessity of a long-term, systematic approach make such a task challenging. Here we present a first snapshot of a long-term integrative modeling program designed to address this issue in the domain of the visual system: a comprehensive spiking model of cat primary visual cortex. The presented model satisfies an extensive range of anatomical, statistical and functional constraints under a wide range of visual input statistics. In the presence of physiological levels of tonic stochastic bombardment by spontaneous thalamic activity, the modeled cortical reverberations self-generate a sparse asynchronous ongoing activity that quantitatively matches a range of experimentally measured statistics. When integrating feed-forward drive elicited by a high diversity of visual contexts, the simulated network produces a realistic, quantitatively accurate interplay between visually evoked excitatory and inhibitory conductances; contrast-invariant orientation-tuning width; center surround interactions; and stimulus-dependent changes in the precision of the neural code. This integrative model offers insights into how the studied properties interact, contributing to a better understanding of visual cortical dynamics. It provides a basis for future development towards a comprehensive model of low-level perception.

摘要

基于神经基质的结构与功能关系的知识整合是神经信息学和数据驱动计算建模的主要目标之一。然而,数据源的多样性、基准的多样性、不同性质的可观测值的混合以及长期、系统方法的必要性,使得这样的任务具有挑战性。在这里,我们展示了一个长期综合建模计划的第一个快照,该计划旨在解决视觉系统领域的这个问题:猫初级视觉皮层的综合尖峰模型。该模型在广泛的视觉输入统计范围内满足广泛的解剖学、统计学和功能约束。在生理水平的由自发丘脑活动引起的持续随机轰炸的情况下,模拟的皮层回响会自我产生稀疏的异步持续活动,该活动在数量上与一系列实验测量的统计数据相匹配。当整合由多种视觉环境引发的前馈驱动时,模拟网络会产生一种现实的、数量上准确的视觉诱发性兴奋和抑制性传导之间的相互作用;对比度不变的方向调谐宽度;中心-周围相互作用;以及神经编码精度的刺激依赖性变化。这个综合模型提供了关于所研究的特性如何相互作用的见解,有助于更好地理解视觉皮层的动力学。它为未来向低级感知的综合模型发展提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8228/11371232/2d278b922725/pcbi.1012342.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验