Rezaei Babak, Hansen Thomas Willum, Keller Stephan Sylvest
National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
ACS Appl Nano Mater. 2022 Feb 25;5(2):1808-1819. doi: 10.1021/acsanm.1c03251. Epub 2021 Dec 20.
The development of permeable three-dimensional (3D) macroporous carbon architectures loaded with active pseudocapacitive nanomaterials offers hybrid supercapacitor (SC) materials with higher energy density, shortened diffusion length for ions, and higher charge-discharge rate capability and thereby is highly relevant for electrical energy storage (EES). Herein, structurally complex and tailorable 3D pyrolytic carbon/MnO hybrid SC electrode materials are synthesized through the self-assembly of MnO nanoflakes and nanoflowers onto the surface of stereolithography 3D-printed architectures via a facile wet chemical deposition route, followed by a single thermal treatment. Thermal annealing of the MnO nanostructures concurrent with carbonization of the polymer precursor leads to the formation of a 3D hybrid SC electrode material with unique structural integrity and uniformity. The microstructural and chemical characterization of the hybrid electrode reveals the predominant formation of crystalline hausmannite-MnO after the pyrolysis/annealing process, which is a favorable pseudocapacitive material for EES. With the combination of the 3D free-standing carbon architecture and self-assembled binder-free MnO nanostructures, electrochemical capacitive charge storage with very good rate capability, gravimetric and areal capacitances (186 F g and 968 mF cm, respectively), and a long lifespan (>92% after 5000 cycles) is demonstrated. It is worth noting that the gravimetric capacitance value is obtained by considering the full mass of the electrode including the carbon current collector. When only the mass of the pseudocapacitive nanomaterial is considered, a capacitance value of 457 F g is achieved, which is comparable to state-of-the-art MnO-based SC electrode materials.
负载活性赝电容纳米材料的可渗透三维(3D)大孔碳结构的开发为混合超级电容器(SC)材料提供了更高的能量密度、缩短的离子扩散长度以及更高的充放电速率能力,因此与电能存储(EES)高度相关。在此,通过一种简便的湿化学沉积路线,将MnO纳米片和纳米花自组装到立体光刻3D打印结构的表面,随后进行单次热处理,合成了结构复杂且可定制的3D热解碳/MnO混合SC电极材料。MnO纳米结构的热退火与聚合物前驱体的碳化同时进行,导致形成具有独特结构完整性和均匀性的3D混合SC电极材料。混合电极的微观结构和化学表征表明,在热解/退火过程后主要形成了晶态的黑锰矿-MnO,这是一种有利于EES的赝电容材料。结合3D自支撑碳结构和自组装的无粘结剂MnO纳米结构,展示了具有非常好的倍率性能、重量和面积电容(分别为186 F g和968 mF cm)以及长寿命(5000次循环后>92%)的电化学电容电荷存储。值得注意的是,重量电容值是通过考虑包括碳集流体在内电极的总质量获得的。当仅考虑赝电容纳米材料的质量时,可实现457 F g的电容值,这与目前最先进的MnO基SC电极材料相当。