Davis Jonathan T, Jayathilake Buddhinie S, Chandrasekaran Swetha, Wong Jonathan J, Deotte Joshua R, Baker Sarah E, Beck Victor A, Duoss Eric B, Worsley Marcus A, Lin Tiras Y
Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
Sci Rep. 2024 Sep 30;14(1):22662. doi: 10.1038/s41598-024-71765-w.
Recent advances in 3D printing have enabled the manufacture of porous electrodes which cannot be machined using traditional methods. With micron-scale precision, the pore structure of an electrode can now be designed for optimal energy efficiency, and a 3D printed electrode is not limited to a single uniform porosity. As these electrodes scale in size, however, the total number of possible pore designs can be intractable; choosing an appropriate pore distribution manually can be a complex task. To address this challenge, we adopt an inverse design approach. Using physics-based models, the electrode structure is optimized to minimize power losses in a flow reactor. The computer-generated structure is then printed and benchmarked against homogeneous porosity electrodes. We show how an optimized electrode decreases the power requirements by 16% compared to the best-case homogeneous porosity. Future work could apply this approach to flow batteries, electrolyzers, and fuel cells to accelerate their design and implementation.
3D打印技术的最新进展使得制造无法用传统方法加工的多孔电极成为可能。凭借微米级的精度,现在可以设计电极的孔结构以实现最佳能量效率,并且3D打印电极不限于单一的均匀孔隙率。然而,随着这些电极尺寸的扩大,可能的孔设计总数可能变得难以处理;手动选择合适的孔分布可能是一项复杂的任务。为应对这一挑战,我们采用逆向设计方法。利用基于物理的模型,对电极结构进行优化,以最大限度地减少流动反应器中的功率损耗。然后将计算机生成的结构打印出来,并与均匀孔隙率电极进行基准测试。我们展示了与最佳情况的均匀孔隙率相比,优化后的电极如何将功率需求降低16%。未来的工作可以将这种方法应用于液流电池、电解槽和燃料电池,以加速它们的设计和实施。