Ioannides Andreas A, Orphanides Gregoris A, Liu Lichan
Lab. for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, 1065, Cyprus.
The English School, Nicosia, 1684, Cyprus.
Curr Res Physiol. 2022 Feb 15;5:118-141. doi: 10.1016/j.crphys.2022.02.003. eCollection 2022.
High amplitude electroencephalogram (EEG) events, like unitary K-complex (KC), are used to partition sleep into stages and hence define the hypnogram, a key instrument of sleep medicine. Throughout sleep the heart rate (HR) changes, often as a steady HR increase leading to a peak, what is known as a heart rate surge (HRS). The hypnogram is often unavailable when most needed, when sleep is disturbed and the graphoelements lose their identity. The hypnogram is also difficult to define during normal sleep, particularly at the start of sleep and the periods that precede and follow rapid eye movement (REM) sleep. Here, we use objective quantitative criteria that group together periods that cannot be assigned to a conventional sleep stage into what we call REM0 periods, with the presence of a HRS one of their defining properties. Extended REM0 periods are characterized by highly regular sequences of HRS that generate an infra-low oscillation around 0.05 Hz. During these regular sequence of HRS, and just before each HRS event, we find avalanches of high amplitude events for each one of the mass electrophysiological signals, i.e. related to eye movement, the motor system and the general neural activity. The most prominent features of long REM0 periods are sequences of three to five KCs which we label multiple K-complexes (KCm). Regarding HRS, a clear dissociation is demonstrated between the presence or absence of high gamma band spectral power (55-95 Hz) of the two types of KCm events: KCm events with strong high frequencies (KCmWSHF) cluster just before the peak of HRS, while KCm between HRS show no increase in high gamma band (KCmNOHF). Tomographic estimates of activity from magnetoencephalography (MEG) in pre-KC periods (single and multiple) showed common increases in the cholinergic Nucleus Basalis of Meynert in the alpha band. The direct contrast of KCmWSHF with KCmNOHF showed increases in all subjects in the high sigma band in the base of the pons and in three subjects in both the delta and high gamma bands in the medial Pontine Reticular Formation (mPRF), the putative Long Lead Initial pulse (LLIP) for Ponto-Geniculo-Occipital (PGO) waves.
高振幅脑电图(EEG)事件,如单一K复合波(KC),被用于将睡眠划分为不同阶段,从而定义睡眠图,这是睡眠医学的关键工具。在整个睡眠过程中,心率(HR)会发生变化,通常是心率稳步上升至峰值,即所谓的心率激增(HRS)。在最需要睡眠图的时候,比如睡眠受到干扰且图形元素失去其特征时,睡眠图往往无法获取。在正常睡眠期间,尤其是在睡眠开始时以及快速眼动(REM)睡眠之前和之后的时间段,睡眠图也很难定义。在此,我们使用客观定量标准,将无法归为传统睡眠阶段的时间段归为我们所称的REM0期,心率激增(HRS)的出现是其定义属性之一。延长的REM0期的特征是高度规则的心率激增序列,会产生约0.05赫兹的超低频振荡。在这些规则的心率激增序列中,且就在每次心率激增事件之前,我们发现针对每个大量电生理信号,即与眼动、运动系统和一般神经活动相关的信号,都会出现高振幅事件的雪崩现象。长时间REM0期最显著的特征是三到五个K复合波的序列,我们将其标记为多个K复合波(KCm)。关于心率激增,在两种类型的KCm事件的高伽马波段频谱功率(55 - 95赫兹)的有无之间表现出明显的分离:具有强烈高频的KCm事件(KCmWSHF)聚集在心率激增峰值之前,而心率激增之间的KCm事件在高伽马波段没有增加(KCmNOHF)。在KC之前的时期(单个和多个),通过脑磁图(MEG)对活动进行断层扫描估计显示,在α波段,Meynert基底核的胆碱能神经元普遍增加。KCmWSHF与KCmNOHF的直接对比显示,所有受试者在脑桥底部的高西格玛波段以及三名受试者在内侧脑桥网状结构(mPRF)的δ波段和高伽马波段均有增加,内侧脑桥网状结构被认为是脑桥 - 膝状体 - 枕叶(PGO)波的假定长先导初始脉冲(LLIP)。