Suppr超能文献

面向发展中国家忙碌医生的在线手写医学单词识别系统,确保高效的医疗保健服务提供。

An online cursive handwritten medical words recognition system for busy doctors in developing countries for ensuring efficient healthcare service delivery.

机构信息

Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.

Global Communication Center, Grameen Communications, Dhaka, Bangladesh.

出版信息

Sci Rep. 2022 Mar 4;12(1):3601. doi: 10.1038/s41598-022-07571-z.

Abstract

Doctors in developing countries are too busy to write digital prescriptions. Ninety-seven percent of Bangladeshi doctors write handwritten prescriptions, the majority of which lack legibility. Prescriptions are harder to read as they contain multiple languages. This paper proposes a machine learning approach to recognize doctors' handwriting to create digital prescriptions. A 'Handwritten Medical Term Corpus' dataset is developed containing 17,431 samples of 480 medical terms. In order to improve the recognition efficiency, this paper introduces a data augmentation technique to widen the variety and increase the sample size. A sequence of line data is extracted from the augmented images of 1,591,100 samples and fed to a Bidirectional Long Short-Term Memory (LSTM) network. Data augmentation includes pattern Rotating, Shifting, and Stretching (RSS). Eight different combinations are applied to evaluate the strength of the proposed method. The result shows 93.0% average accuracy (max: 94.5%, min: 92.1%) using Bidirectional LSTM and RSS data augmentation. This accuracy is 19.6% higher than the recognition result with no data expansion. The proposed handwritten recognition technology can be installed in a smartpen for busy doctors which will recognize the writings and digitize them in real-time. It is expected that the smartpen will contribute to reduce medical errors, save medical costs and ensure healthy living in developing countries.

摘要

发展中国家的医生太忙了,没时间开电子处方。97%的孟加拉国医生开手写处方,其中大部分难以辨认。由于处方中包含多种语言,因此更难阅读。本文提出了一种机器学习方法来识别医生的手写体,以创建电子处方。开发了一个“手写医疗术语语料库”数据集,其中包含 480 个医疗术语的 17431 个样本。为了提高识别效率,本文引入了一种数据增强技术来拓宽种类并增加样本量。从 1591100 个样本的增强图像中提取一系列行数据,并将其输入到双向长短期记忆(LSTM)网络中。数据增强包括模式旋转、移位和拉伸(RSS)。应用了八种不同的组合来评估所提出方法的强度。结果表明,使用双向 LSTM 和 RSS 数据增强的平均准确率为 93.0%(最高:94.5%,最低:92.1%)。这一准确率比没有数据扩展的识别结果高 19.6%。所提出的手写识别技术可以安装在智能笔中,供忙碌的医生使用,实时识别手写内容并将其数字化。预计智能笔将有助于减少医疗错误、节省医疗成本并确保发展中国家的健康生活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6691/8897401/45ad5ec4292f/41598_2022_7571_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验